• Title/Summary/Keyword: 연안침식대응정책

Search Result 2, Processing Time 0.015 seconds

A Study on the Introduction of Impact Assessment System for Coastal Erosion (연안침식영향평가 제도 도입방안 연구)

  • Bum Shik Shin;Hyun Hwa Shin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2024
  • Recently, the impact of climate change with sea levels rise, abnormal high waves, and continuous construction of artificial structures such as ports and harbors, has led to an increasing trend in coastal erosion. In this study, the scope and method of Environmental Impact Assessment, Utilization of Sea Areas, Disaster Impact Assessment, and Risk Assessment of Coastal Disasters System, which are carried out during development projects and erosion reduction projects carried out on the coast, are analyzed to identify each problem. , we proposed a plan to introduce the Impact Assessment System for Coastal Erosion, which can minimize the impact of coastal erosion by deriving improvement measures.

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index (연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구)

  • Lee, Haemi;Kang, Tae soon;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.304-314
    • /
    • 2015
  • We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.