• Title/Summary/Keyword: 연안방향

Search Result 366, Processing Time 0.019 seconds

Compositional Variations of the Beach Sediments in Cheju Island (제주도 해빈퇴적물의 구성성분)

  • 지옥미;우경식
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.480-492
    • /
    • 1995
  • Petrographic investigation has been carried out to determine the composition of the beach sediments and the affecting factors which have controlled their compositional variations from Hyupjae, Aeweol, Iho, Samyang, Hamdeok, Sehwa, Pyoseon, Jungmun, and Hwasun areas along the coast of the Cheju Island. Average mean sizes of the beach sediments are Hyupjae 2.2ø, Aeweol 0.8ø, Iho 1.4ø, Samyang 2.4ø, Hamdeok 1.6ø, Sehwa 1.5ø, Pyoseon 2.1ø, Jungmun 0.4ø, and Hwasun 0.9ø, thus, aries from 0.4 to 2.4ø. The beach sediments from Pyoseon and Hwasun areas are poorly sorted, those from Aeweol and Jungmun areas are moderately sorted and those from the rest of the areas are moderately well sorted. While-colored beach sediments in Hyupjae, Aeweol, Hamdeok, Sehwa, and Pyoseon areas are mostly composed of calcareous shells (more than 85%) such as mollusk, red algae, benthic foraminiferas, etc., whereas volcanic rock fragment is the dominant component of the black-colored beach sediments in Iho, Samyang, and Hwasun areas. Especially, the relatively white-colored beach sediment in Jungmun area, which is on e of the carbonate-dominant areas, shows a higher content of rock fragments than the other carbonate-dominant areas. The beach sediments in Pyoseon area show a high content of carbonate intercalates. Considering the contributions by organisms according to grain size, grains with the size range of 1∼2ø are mostly composed of calcareous red algae fragments, and grains with the size range of 2∼3ø consist of mollusk fragments. It is also notable that bryozoan fragments comprise about 48% of the sediment in Samyang area with the size range of 0∼1ø. The composition of the beach sediments in Cheju Island appears o be controlled by the riverine supply rate of volcanic rock fragments, the lithology of the rocks distributed ear the beaches, the direction of alongshore currents, and the direction of storms, etc.. It is suggested that the beach sediments in Iho and Samyang areas show black color because of the higher supply rate of the volcanic rock fragments from the nearby rivers, whereas those in the rest of the areas show white color due to the relatively lower content of volcanic rock fragments and higher content of carbonate components transported from shallow marine environment. In Hwasun area, the content of volcanic rock fragments is high, and they are directly from the tuffaceous rocks distributed nearby. Also, the volcanic rock fragments in Jungmun area are transported not only from the rivers nearby but also from the nearby tuffs by storm activities. The beach sediment in Pyoseon area contains a high content of carbonate intercalates, which formed in the nearby shallow marine environment through marine cementation. This indicates that active marine cementation occurs in shallow marine environment near Pyoseon area.

  • PDF

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea (고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정)

  • Kim, Jieun;Yu, Jaehyung;Yang, Dongyoon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.589-599
    • /
    • 2014
  • This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.

India's Maritime-Security Strategy: Pretext, Context and Subtext (인도의 해상 안보 전략: 구실, 맥락 및 숨은 의미)

  • Khurana, Gurpreet S
    • Maritime Security
    • /
    • v.4 no.1
    • /
    • pp.1-56
    • /
    • 2022
  • Why has India become a key actor in the maritime-configured Indo-Pacific region? There are some external factors, but for India, its geo-strategic frontier encompassing its geopolitical and maritime interests is expanding rapidly beyond its territorial space across both the Indian and Pacific oceans amidst an increasingly arduous geopolitical and security environment. India must, therefore, acquire the ability to influence events within this strategic arena using all facets of national power, including maritime-military power. Lately, therefore, New Delhi has invested much intellectual capital to review its maritime-security strategy. India's new strategy is premised on the concept of holistic security involving the 'softer' aspects of maritime-security, and a rekindling of maritime consciousness in India, a nation that has traditionally been beset by 'sea-blindness'. The strategy adopts a region-wide, inclusive, and a more proactive approach than hitherto, as is evident in its title 'Ensuring Secure Seas: Indian Maritime Security Strategy'. While it deals with the growing concern of new non-traditional threats in the Indian littoral and the need for military deterrence and preparedness, it also addresses the imperatives for India to seek a favorable and rules-based benign environment in its immediate and extended maritime periphery, including through multi-vectored strategic partnerships dictated by its enduring principle of strategic autonomy. For a more profound and comprehensive understanding of India's maritime-security strategy, this paper examines the key unstated and implicit factors that underpin the strategy. These include India's historical and cultural evolution as a nation; its strategic geography; its geopolitical and security perceptions; and the political directions to its security forces. The paper deals specifically with India's response to maritime threats ranging from natural disasters, crime and state-sponsored terrorism to those posed by Pakistan and China, as well as the Indian Navy's envisaged security role East of the Malacca Straits. It also analyzes the aspects of organizational restructuring and force planning of India's maritime-security forces.

  • PDF

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF