• Title/Summary/Keyword: 연속 흡착

Search Result 202, Processing Time 0.024 seconds

Removal of Lead by Anherobacter sp. (Antherobacter sp.에 의한 납 제거)

  • 안갑환;서근학
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • The biosorption of heavy metals has received a lot of attraction for application of metal ions treatment. In this work, we studied with Arthrobactor sp., screening from a wastewater containing heavy metals. The Pb uptake capacity of Arthrobactor sp. was nearly 146.9 mg Pb/g dry biomass(initial concentration, 500 may L), whereas the Pb uptake capacity of Sacchuomyces cerevisiae and Sacchuomyces uvuum were only around 39.40 and 35.65 mg Pb yg dry biomass, respectively. The Pb and Cr were removed from metal solution much more effeciently than were the other metals(Cd and Cu). The Pb uptake capacity of Aythrobactor sp. increased with increasing in pH(1.8, 3.0 and 4.0) and decreased with Increaslng of biomass concentration. At pH 4.0, the Pb uptake capacity reached 244 mg Pb/g dry biomass in Pb initial concentration of 1000 mg/L. The Pb uptake capacity of Ayhol)actor sp. treated by KOH and $CaCl_2$ were increased above values obtained with untreated Ayurobactor sp. However, the Pb uptake capacity fore the breakthrough points were reached.

  • PDF

Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor (활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계)

  • Lee, Song-Woo;Bae, Sang-Kyu;Kwon, Jun-Ho;Na, Young-Soo;An, Chang-Doeuk;Yoon, Young-Sam;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.620-625
    • /
    • 2005
  • This study is to investigate the correlation between pore structures of activated carbons and adsorption characteristics of acetone vapor using the dynamic adsorption method. The experimental results showed that the breakthrough time of ACT activated carbon made by Takeda was the longest, because ACT has more micropores below pore diametr $10{\AA}$ than the compared activated carbons. The equilibrium adsorption capacity had direct correlation to the breakthrough time. The relation between BET specific surface area and the equilibrium adsorption capacity was hard to say linear. Therefore, it was difficult to estimate the adsorption ability of activated carbons only by BET specific surface area. The correlation factor between the cumulative surface area and the equilibrium adsorption capacity decreased with enlarging the range of pore size, and there was the highest correlation factor in the range of below $10{\AA}$.

The Sorption Kinetic Studies and Development of Mixed Culture for Removal of Nonpoint Pollution Source (비점오염원 처리를 위한 혼합여재의 개발 및 흡착 Kinetic 연구)

  • Chung, Woojin;Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This study investigated on the adsorption of nonpoint pollution source using the Sand, hydroxyapatite(HAP), Zeolite and mixed culture. The adsorption of nonpoint pollution source on Sand, hydroxyapatite(HAP), Zeolite and mixed culture was investigated during a series of batch adsorption experiments. After the batch absorption experiments analysed COD, T-N, T-P on adsorption water. The experimental data was analysed using the pseudo-first-order adsorption kinetic models. Langmuir and Freundlich isotherm models were tested for their applicability. The maximum adsorbed amount $(Q_{max})$ of COD were found to be sand 0.0511mg/g, HAP 0.1905mg/g, Zeolite 1.0366mg/g and Mixed media 0.7444mg/g. The maximum adsorbed amount $(Q_{max})$ of T-N were found to be sand 0.0159mg/g, HAP 0.0537mg/g, Zeolite 0.5496mg/g and Mixed media 0.1374mg/g. The maximum adsorbed amount $(Q_{max})$ of T-P were found to be sand 0.0202mg/g, HAP 0.1342mg/g, Zeolite 0.0462mg/g and Mixed media 0.1180mg/g. As a result, the mixed media was effective to remove nonpoint pollution source.

Analysis of the Behavior of Tubular-Type Equipment for Nuclear Waste Treatment : Sensitivities of the Parameters Affecting Mass Transfer Yield (방사성폐기물의 화학처리공정에 사용되는 유동관식 장치의 해석 : 물질전달 수율에 미치는 매개변수들의 민감도)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipments, as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities. affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the backmixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface, and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate.

  • PDF

Effect of Desorption Pressure on Adsorption and Desorprtion Breakthrough Behaviors of Carbon Dioxide with Zeolite 3A, 4A, 5A, and 13X Pellets (제올라이트 3A, 4A, 5A, 13X 펠렛의 탈착 압력에 따른 이산화탄소 흡·탈착 파과특성)

  • Sim, Jungbo;Noh, Young-Kyoung;Park, Young Cheol;Kim, Hyunuk;Ryu, Ho-Jung;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • The effect of desorption pressure on $CO_2/N_2$ breakthrough behaviors for 4 different adsorbents was studied at a fixed bed. Zeolite 3A, 4A, 5A, and 13X pellets were used as adsorbents. Cyclic operations were executed with varying desorption pressure from vacuum (0 bar) to 3 bar while other conditions such as adsorption step pressure (3 bar), temperature (293 K), composition ($CO_2:N_2=10:90$vol%) and flow rate (400 ccm) were fixed at constant values. Each adsorption and desorption step was set as 80 min, which totaled up to 160 min per a cycle. 5 cycles with adsorption and desorption steps were run overall. After the experiment, breakthrough time, saturation time, and adsorption amount were measured and compared in order to find an optimum adsorbent and a proper operating condition for a post combustion $CO_2$ capture process.

Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics (경쟁적 저해를 갖는 고정화 β-galactosidase 반응기의 해석)

  • Kang, Byung Chul
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1471-1476
    • /
    • 2013
  • The present study deals with the immobilization of Kluyveromyces lactis ${\beta}$-galactosidase on a weak ionic exchange resin (Duolite A568) as polymer support. ${\beta}$-Galactosidase was immobilized using the adsorption method. A kinetic study of the immobilized enzyme was performed in a packed-bed reactor. The adsorption of the enzyme followed a typical Freundlich adsorption isotherm. The adsorption parameters of k and n were 14.6 and 1.74, respectively. The initial rates method was used to characterize the kinetic parameters of the free and immobilized enzymes. The Michaelis-Menten constant ($K_m$) for the immobilized enzyme (120 mM) was higher than it was for the free enzyme (79 mM). The effect of competitive inhibition kinetics was studied by changing the concentration of galactose in a recycling packed-bed reactor. The kinetic model with competitive inhibition by galactose was best fitted to the experimental results with $V_m$, $K_m$, and $K_I$ values of 46.3 $mmolmin^{-1}mg^{-1}$, 120 mM, and 24.4 mM, respectively. In a continuous packed-bed reactor, increasing the flow rate of the lactose solution decreased the conversion efficiency of lactose at different input lactose concentrations. Continuous operation of 11 days was conducted to investigate the stability of a long-term operation. The retained activity of the immobilized enzymes was 63% and the half-life of the immobilized enzyme was found to be 15 days.

Comparison of Some Physicochemical Properties and Adsorption of Organic Cations between Ca- and Na-bentonites (Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교)

  • 고상모;김자영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.243-257
    • /
    • 2002
  • Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12~15 $\AA$ to $40\AA$ (basal spacing). HDTMA-bentonite is almost expanded to $37~38\AA$ when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 $\AA$ in the 140% CEC equivalent amount of CP It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud (Red Mud의 산처리 및 열처리가 불소 제거에 미치는 영향)

  • Kang, Ku;Nyakunga, Expedito;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.210-217
    • /
    • 2015
  • Fluoride removal by acid and heat treated red mud were studied in batch and column system regarding contact time, initial concentration, pH, adsorbent dose, and filter depth. The results showed that acid treated with 0.8 M HCl, had highest adsorption capacity of fluoride and adsorption capacity decreased as heat treatment temperature increased. Sorption equilibrium reached in 30 min at a initial concentration of 50 mg-F/L but 1 h was required to reach the sorption equilibrium at the initial concentration of 500 mg-F/L by 0.8 M acid treated red mud (0.8 M-ATRM). Equilibrium adsorption data were fitted well to Langmuir isotherm model with maximum fluoride adsorption capacity of 23.162 mg/g. The fluoride adsorption decreased as pH increased due to the fluoride competition for favorable adsorption site with $OH^-$ at higher pH. Removal percentage was increased but the amount of adsorption per unit mass decreased by adding the amount of 0.8 M-ATRM. It was concluded that the 0.8 M-ATRM could be used as a potential adsorbent for the fluoride removal from aqueous solutions because of its high fluoride adsorption capacity and low cost.

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

Temperature Effect on Effective Diffusion Coefficients of Zn and Cd through Column Diffusion Tests (칼럼 확산 실험을 통한 아연 및 카드뮴의 유효확산계수에 미치는 온도영향)

  • Dho, Nam-Young;Lee, Seung-Rae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.13-26
    • /
    • 2002
  • In this study, column diffusion tests for Cd and Zn were conducted at $15^{\circ}C$ and $55^{\circ}C$ to investigate a temperature effect on effective diffusion coefficient. An increase in temperature from $15^{\circ}C$ to $55^{\circ}C$ caused up to ten times larger diffusion coefficient for each heavy metal. Besides, it caused the increased retardation of heavy metals, and hence the effective diffusion coefficient should be overestimated as we use an overestimated retardation factor to calibrate the coefficient. The results of sequential extraction analyses showed that Zn was occluded in carbonate phase and this trend was getting prominent with the increase in temperature. As for Cd, it was partitioned mainly in the exchangeable phase(over 60%) at any temperature.

  • PDF