• Title/Summary/Keyword: 연속 슬라이딩 모드 제어

Search Result 21, Processing Time 0.021 seconds

Design and Application of the Semi-Continuous Sliding Mode Control(Control of Electromagnetic Suspension Systems) (반-연속 슬라이딩 모드 제어기의 설계 및 적용(자기부상 시스템의 제어))

  • Lee, Kyu-Joon;Kim, Sang-Hwan;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.38-46
    • /
    • 2002
  • A new semi-continuous sliding mode control is proposed for electromagnetic suspension systems. The control input is derived from the reaching law and the Lyapunov stability criteria, which is composed of continuous terms and low switching term. It has a low switching gain and chattering fee characteristics. It is shown by the computer simulation that the proposed control has good tracking performance and robustness compared with the classical sliding mode control.

Cutting Force Regulation in Turning Using Sliding Mode Control (슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어)

  • 박영빈;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

A Continuous Sliding Surface Transformed VSS by Saturation Function for MIMO Uncertain Linear Plants (다입출력 불확실 선형 플랜트를 위한 포화함수에 의한 연속 슬라이딩 면 변환 가변구조시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.127-134
    • /
    • 2015
  • In this note, a continuous sliding surface transformed variable structure systems by the saturation function is presented for MIMO uncertain linear plants. A discontinuous sliding surface transformed VSS is proposed theoretically. The closed loop exponential stability together with the MIMO existence condition of the sliding mode on the predetermined sliding surface is investigated. For practical applications, a continuous approximation of the discontinuous VSS is made by means of the saturation function. The discontinuity of the control input as the inherent property of the VSS is much improved in view of the practical aspects. Through a design example and simulation studies, the usefulness of the proposed continuous transformed VSS controller is verified.

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC (ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Lee, Min-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1203-1211
    • /
    • 2017
  • This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

A New Improved Continuous Variable Structure Tracking Controller For BLDD Servo Motors (브러쉬없는 직접구동 전동기를 위한 새로운 개선된 연속 가변구조 추적제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.47-56
    • /
    • 2005
  • A new improved robust variable structure tracking controller is presented to provide an accurately prescribed tracking performance for brushless direct drive(BLDD) servo motors(SM) under uncertainties and load variations. A special integral sliding surface suggested for removing the reaching phase problems can define its ideal sliding mode and virtual ideal sliding trajectory from an initial position of SM. The tracking error caused by the nonzero value of the sliding surface is derived. A corresponding continuous control input with the disturbance observer is suggested to track a predetermined virtual ideal sliding trajectory within a prescribed value under all the uncertainties and load variations. The usefulness of the proposed algorithm is demonstrated through the comparative simulations for a BLDD SM under load variations.

  • PDF

Stepwise Fuzzy Moving Sliding Surface for Second-Order Nonlinear Systems (2차 비선형 시스템에 대한 계단형 퍼지 이동 슬라이딩 평면)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.524-530
    • /
    • 2002
  • This note suggests a stepwise fuzzy moving sliding surface using Sugeno-type fuzzy system and presents a sliding mode control scheme using it. The fuzzy system has the angle of state error vector and the distance from the origin in the phase plane as inputs and a first-order linear differential equation as output. The surface initially passes arbitrary initial states and subsequently moves towards a predetermined surface via rotating or shifting. This method reduces the reaching and tracking time and improves robustness. Conceptually the slope of the Proposed fuzzy moving sliding surface increases stepwise in the stable region of the phase plane. The surface, however, rotates continuously because the surface is a fuzzy system. The asymptotic stability of the fuzzy sliding surface is proved. The validity of the proposed control scheme is shown in computer simulation for a second-order nonlinear system.

A New Robust Continuos VSCS by Saturation Function for Uncertain Nonlinear Plants (불확실 비선형 플랜트를 위한 포화 함수에 의한 새로운 강인한 연속 가변구조제어시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

THE NUTATION DAMPING CONTROL OF A SPACECRAFT (인공위성의 미동현상 제어에 관한 연구)

  • 이창훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 1994
  • In this paper, the Variable Structure System(VSS) theory with new continuous switching dynamic equation is used to design an automatic controller for the active nutation damping in momentum bias stabilized spacecraft. In the application of VSS theory to a linearized multivariable system with the nutation damping systems, there exist some disadvantages such as how to determine the switching gains and how to reduce the chattering phenomina and reaching phase in input and state trajectories. To solve these drawbacks, this paper presents the continuous switching dynamic equation instead of the discontinuous switching logics to obtain the sliding mode. The new design approach is much simpler than the VSS theory. And there do not exist chattering phenomina in this method because the obtained control inputs are continuous. Simultaneously the reaching phase is reduced by a suitable choice of design factor.

  • PDF

The Ball Screw Position Control System Driven by a Pneumatic Motor Using Continous Sliding Mode (연속 슬라이딩 모드를 이용한 공압모터 구동 볼스크류 위치제어 시스템)

  • Kim, Geun-Mook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • The ball screw position control system driven by a pneumatic motor using continuous sliding mode is proposed. The design and performance of proposed servo system are presented by means of examples tested under practical service conditions. Results of experimental implementation on the proposed system illustrate the effectiveness of the ball screw position control system driven by a pneumatic motor using continuous sliding mode as a servo pneumatic actuator driven by a pneumatic motor.

  • PDF

Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems (비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계)

  • Chang, Seung Jin;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.