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Abstract

In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based
on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with
mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of
state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of
the nonlinear system function is separated into the tow parts, ie., state dependent term and state independent term for
extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence
condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed
to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed
sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as
the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the
usefulness of the proposed controller is verified.

Keywords : uncertain nonlinear system, variable structure system, sliding mode control, mismatched uncertainties

I. Introduction So far numerous design methodologies exist for the

controller design of nonlinear systemsLZJ. These

Stability analysis and controller design for include any of a huge number of linear design
uncertain nonlinear systems is open problems now'™. techniqueSB%] used In conjuction with gain

schedulingB]; nonlinear design methodologies such as
CAYY, Y Addstn Ao ASEE
(Dept of Control & Instrum. Eng., Gyeongsang
National University) linearization method[gﬂm, dynamics  inversion
Aedak 201191€21Y, 49 5Y: 2011959124

Lyapunov function approach'! 267" 10&11], feedback
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backstepping[m, adaptive technique which encompass

13 and  nonlinear adaptive

[27~29]

both linear adaptive

1[14] 1[15 ~26] e

control”, and sliding mode contro tc

The sliding mode control(SMC) can provide the
effective means to the problem of controlling
uncertain  nonlinear  systems under parameter
variations and external disturbances™ . One of its
essential advantages 1s the robustness of the
controlled system to variations of parameters and
external disturbances in the sliding mode on the
predetermined sliding surface, s=0. In [19], for
nonlinear output regulator scheme, sliding mode
approach is applied. The underlying concept is that of
designing sliding submanifold which contains the zero
tracking error submanifold. The convergence to a
sliding manifold can be attained relying on a control
strategy still based on a simplex of control vectors
for multi input uncertain nonlinear systems in [20].
Lu and Spurgeon in 1997 considered the robustness
of dynamic sliding mode control of nonlinear system
which are in differential input-out form with additive
uncertainties in the model™. The discrete-time
implementation of a second-order sliding mode
control scheme is analyzed for uncertain nonlinear
system, in [22]. Flemming surveyed so called soft
variable structure controls, compared them to other™",
For 2nd order uncertain nonlinear system with
mismatched uncertainties, a swichting control law
between a first order sliding mode control and a
second order sliding mode control is proposed to
obtain the globally or locally asymptotic stability[24].
The optimal SMC for nonlinear system with
time-delay is suggested in [25]. The nonlinear time
varying sliding sector is designed for a single input
nonlinear time varying input affine system which can
be represented in the form of state dependent linear
time variant system with matched uncertainties .

For wuncertain affine nonlinear system  with
mismatched uncertainties and matched disturbance, a
design of the SMC is reported[gm.

In this technical note, the described target plant is

extended rather than [30] in view of the handling

capability. The uncertainty of the nonlinear system
function is separated into the two parts, ie., state
dependent term and state independent term. A
systematic design of a new nonlinear continuous
VSCS based on modified state dependent nonlinear
form is presented for the control of uncertain affine
nonlinear systems with mismatched uncertainties and
matched disturbance. After an affine uncertain
nonlinear system is represented in the form of
modified state dependent nonlinear system, a
systematic design of a new nonlinear VSCS is
presented. To be linear in the closed loop resultant
dynamics and in order to easily satisfy the existence
condition of the sliding mode, the linear transformed
sliding  surface is applied A  corresponding
discontinuous control input is proposed to satisfy the
closed loop exponential stability and the existence
condition of the sliding mode on the linear
surface, which will be

investigated in Theorem 1. To remove the chattering

transformed  sliding
problems of the discontinuous input as an inherent
property of the VSS, an effective continuous
approximation is made. Through a design example
and simulation studies, the usefulness of the proposed
controller is verified. The organization of the this
paper is as follows. In section II, a descriptions of
plants, linear transformed sliding surface, and a
corresponding control input are presented as the main
results. A design example and simulation study is
carried out in section II. Finally a concluding

remarks are given in section IV.

II. A Nonlinear Continuous Variable Structure
Control System(VSCS)

1. Description of plants

Consider an affine uncertain nonlinear system
= f(z,t)+ gz, t)utd (z,t), 2(0) 9]

where € R" is the state, z(0) is its initial state,
wER' is  the f'(z,t)eCc” and
g(x,t)EC’k,kZ 1, g(z,t) =0, forallz ER" and

control,
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forallt > 0 are of suitable dimensions, and d’ (z,t)
implies bounded matched external disturbances.
]

Assumption[26

Al:f'(x,t) is continuously differentiable.
1

in more affine nonlinear system of
[27~28, 301

Then, uncertain nonlinear system can be
represented

modified state dependent coefficient form

a=[folzt)+ Af (1) ]|z + Af,(z,t)

+ (g0 t)+ Agla,t)Jutd (x,t) 2)
=fo(x,t)x+ g (x,t )u+d(z,t)
d(z,t) = Af (z.t)x+ Af,(x,t) 3)

+ Ag(x,t)u+ d (x,t)

where f,(z,t) and g, (x,t) is each nominal value such

that

flat)=[f(@t)+ Af (@) |z + Af, (1) (4a)

g(z.t)z [go(x,t)-l-Ag(x,t)] (4b)

respectively, Af; (x,t) and Ag (x,t) are mismatched
uncertainties, Af,(x,t) is matched uncertainties,
d' (z,t) is matched external disturbance, and d(z,t) is
the totally

respectively. The uncertainty of f’(z,t) is separated

lumped mismatched  uncertainties,

into the tow parts as in (4a). The form of (4a) can
handle more general plants than that of [27] and [28] so
it is extended. The assumptions are made to clearly

describe the plant under consideration

Assumption:

A2: The pair (f,(x,t),g,(z,t)) is controllable for
allr ER"and forallt > 0

A3: The lumped uncertainties d(z,t) is bounded

A4z is bounded if u is bounded.

A5: The nominal value of g, (x,t) is constant, ie.,
9o (z,t) = B.

For a non zero column vector C as the design

parameter later in sliding surface, the following

Zolst AL JHAFZH O A A

2
o2}
Mol

assumptions are satisfied

A6:C7g(z,t) and C”gy(x,t) have the full rank, ie
are invertible

AT:[C7gy(ast)] ' CTAg(w,t) = AT and

INT] <6< 1.

2. Linear Transformed Sliding Surface
To control uncertain nonlinear system (1) or (2)
with resultant linear dynamics, the linear sliding

surface used in this design is as follows:

s= [C’Tg0 (x,t)]ilCT:L‘

- 5)
=[c"B] 'c%x(=0)

[15]

which is transformed one ™ so as to satisfy the

existence condition of the sliding mode on the
predetermined sliding surface for uncertain nonlinear

) [32]

system (2)"“. The equivalent control input of the linear

transformed sliding surface is obtained by using s=0

1t
[15] as

—[[e?B) ' Cg(x,t)] ' [Cc7B]
C’T{fo (z,t)+ Af, (:c,t)}:z:

~[le™8]  cTg,n)] oTB]
CT{Af, (z,t)+d (z,t)}

ueq

©)

This control input can not be implemented because
of the uncertainties and external disturbance, but only
used to obtaining the ideal sliding dynamics. The
ideal sliding mode dynamics of the sliding surface (5)

can be derived by the equivalent control approachm

as
x-s: [f()(xs’t)
— g0 )Ty ) CTFy (at,
r,= [fole,t)— gy (e, ) Kz, ®)
K(xs): {CTgo(xs7t)]7lch0(xs’t) (9)

where x, is the state of the ideal sliding mode
dynamics for ¢ = ¢, where ¢, is the reaching time.

The solution of (6) identically defines the sliding

(222)
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surface after reaching. Hence to design the sliding
surface as stable, this ideal sliding dynamics is
designed to be stable. To choose the stable gain based
on the Lyapunov stability theory[mwm, the ideal sliding
dynamics (7) is represented by using the nominal plant
of (2) as

(10)
=f(@.t)x, f (x,t)=fo(x,t)—g,(2xt)K(x)

r= fo (m,t)ergO (z,t)u, u=—K(x)zx

To select the stable gain, take a Lyapunov function

[10~11]

candidate as

Viz)=z"Px, P>0 (11)

The derivative of (11) becomes

V(x) = CL‘T[fO (x,t)TP—i— Pf, (ac,t)]ac

+uTgOT(x,t)Pac+mTPgo(x,t)u (12)

If one takes the control input as

uw=— gl (x,t)Pzx (13)

and Q(z,t) > 0forallz € R"andforallt > 0 is

fo(x,t)TPJrPfo(x,t):— Q(x,t) (14)

then

V(:c) =— xTQ(x,t)x— 2xTPgU (a:,t)goT(myt)Px
:*zT[Q(x,t)—F 2Py, (x,t)gOT(a:,t)P]x
:*xT[fCT(a:,t)P—l- Pfc(x,t)]x

:_.’L’TQC({L‘,t)LU, (15)
Q.(x,t) = fl(x,t) P+ Pf (x.t)
S—)\min{QC(x,t)}xQ
<0
Therefore the stable gain is chosen as
K(x) = gUT(x,t)P or
=gy (1) CTfy (ayt) (16)

3. Control Input
The corresponding control input is proposed as

follows:

uz—K(sc)x—AKx—Kls—K2sign(s) a7

(223)
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where K(z) is a static nonlinear feedback gain,
A K is a state dependent switching gain, K, is a
feedback gain of the sliding surface itself, and A&, is

a sliding surface dependent switching gain,
respectively as
_ {C’Tgo(x7t)]7101fo(z7t) or
K(z) T (en) P (1R)
AK=[Ak]  j=12,..n (19)
max{[CTB]flCTAfl(a:,t) o O(I,t)]
—AIlC™B ;
- A min{/+ A7}
Ak = szgn(sx‘i) >0 » L (20)
! min{[CY'B]’]CfAfl (@t)| crf, (:v,t)}
—AIICTB i
- min{/+ AI}
sign(sxj) <0
K, >0 21)
_ max{[c7B] " CMAf @) +d @)} (o

2 min{/+ A1}

The real sliding dynamics by the proposed control
(17) with the linear transformed sliding surface (5) is

obtained as follows:

c’x

CT f(] (lf,t)’L' + Afl (zvt)x
+ AfQ(x,t) +g(x,t)u
+d (z,t)

s=[C"B]
=[c"B]

-1
-1

=[CTB] 'Ot (@ t)z + AF, (w,t)z + AF, (2,t)

+g(x,t){—K(a:)x—AKx }

— K5 — K,sign(s)

+d (z,t)
= [CTB}_lcho(:U,t)w*K(w)w
[CTB]_lcTAfl(x,t).’I:*A[K(.T,‘).T,‘
(IH+ADAKz—([+ADKs
+o"B] e s, (a,t) +d (1)
—(I+ ADK,sign(s)

I+

=+ [CTB] - 1C’TAf1 (x,t)x— ANIK(z)x
—([+ADAKz—(I+ ADK;s
+ "Bl oAl (z,t)+d (x.t))
— (I+ ADK,sin(s)

(24)

The closed loop stability by the proposed control
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input with sliding surface together with the existence
condition of the sliding mode will be investigated in

next Theorem 1.

Theorem 1: If the sliding surface is designed in
the stable, ie. stable design of K (:B) the proposed
input with Assumption Al-A7 satisfies the existence
condition of the sliding mode on the sliding surface

and exponential stability.

Proof; Take a Lyapunov function candidate as
(25)

Differentiating (25) with respect to time leads to
and substituting (24) into (26)

7

= s's

= ST[CTBrlCTAfl (z,t)x
*STA]K(LC){L‘ *sT[[—&— AT A Kz

— sT[[—F AT Kis

+sT[CTB]  CT(A Ly (w,t) +d (2,1))

- ST[Pr AT Kzsign(s)

<—e K llsl% e=min{ll(Z+ A DI}

=— eKlsTs

=—2eK, Viz)

V (z)

v (z)

(26)

From (26), the following equation is obtained as

Viz)+2eK,V(z) <0 (27)

—2ekt

Vi) < (28)

7(0)e

And the second order derivative of V(z) becomes

Vo) =s"5+5"5 o 29)
= (s)2+5 {C'[B] CTr< oo
and by Assumption A4 V(:c) is bounded which
completes the proof of Theorem 1.

The switching of discontinuous part of the control
input (17) results in the chattering problems because
that may be harmful to practical plants. Hence the
continuous approximation of the switching part of the

discontinuous input is essentially necessary. Using

A FZROA A

oz

ol

the saturation function, one can effectively make the

input be continuous for practical application as
UZ—K(x)x—Kls

s (30)
Is|+ &

- {AKx-l—KQsign(s)}

for a positive suitable constant ¢ > 0, which is
different from that of Chern & Wu's continuous

[31]

approximation™ . The discontinuity of the control input

can be dramatically improved without severe

performance deterioration.
II. Design Example and Simulation Studies

Consider a second order affine uncertain nonlinear
system with mismatched uncertainties and matched

disturbance
z,=— 2, +z,sin?(z,) + z, +0.02sin(z, )u (31)
z,=0.7sin (2, ) +z, — 0.8sin (z,) + 0.2(z> + 22)
+ zo5in? (2,) + (2+ 0.5sin (2¢))u + 2sin (5¢)

Since (31) satisfy the Assumption Al, (31) is

represented in state dependent coefficient form as

[xl
Lo

—1+sin’(z,) 1
= x
0 1+sin®(z,)
N 0
0.7sin(z,) —0.8sin (zz) +0.2 (a:? +x§)
[ 0.02sin(z,) ] [ 0 ]
. u .
2+0.5sin (2t) 2sin (2t)

] (32)

where the nominal parameter f,(z,t) and g, (z,t)
Afl (:L’,t)

Ag(x,t), and matched uncertainty Af,(z,t) are

and mismatched uncertainties and

foe) =[5 1] st =13,
0
sin®(x, )} ’

0.02sin (ml)]
0.5sin (2t)

sin’(x,)

Afl(a:,t)l 0

Aglat) = [ (33)

0
Afylat) = [0.7Sin(a:1) —0.8sin(z,) +0.2(x] +23)

To design the stable transformed linear sliding
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surface, f.(x,t) is selected as sliding surface is determined as
flat)=fyled) gkt =[2G ¢’ (15 1] (38)

. The selected gains in the discontinuous control
in order to have the two poles at —16.9410 and

—0.0590. The P in (11) is chosen as 80

70 8
[ 10. —3.75

P= [—3.75 4.25]>0 (35) & ’
- &0 =
so as to be g |
T _[-1325 1375 = = 1
Jled) PP (et = | T2 S <o (36) .l _
Hence, the continuous feedback gain is chosen as N |

u_
K(x)= g(;[(x,t)P: [-7.5 8.5] (37) M%7 o7 0F 08 1 12 14 5 i@ 2

Time [sec]
Therefore, the coefficient of the linear transformed a2l 3 22lo|d of

Fig. 3. Sliding surface.
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Fig. 1. () @, and (i) @, time trajectories. Fig. 4. Discontinuous control input.
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trajectory.
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input (17) satisfying the equations (19)-(23) are as

follows:
Ak — 4.0 if sz; >0
L =40 if sz, <0’
Ak, — 6.0 if szy>0
2 —6.0 if sz,<0
K, =50

K,=15.4+02(z3+x3)

(39)

(40)
(41)

The simulation is carried out under 0.1[msec]

sampling time and with z(0) = [10 5] 7 initial state.

Fig. 1 shows (i) x; and (ii) x, time trajectories. The

phase trajectory(i) and ideal sliding trajectory(ii) are

depicted in Fig. 2. The sliding surface s(t) is shown

in Fig. 3. The control input is depicted in Fig. 4. The

20
U_
20+
ot
,EU_
o
B0+
=100
1201
140 1 - -
— (i) real traject
e (:|]rfcli\a{?lijﬁr?g?rajectury ‘ \\\
e T L
0 1 2 3 4 a3 B 9 10 L
x1
ag 6. [31]e () AH A AT i) olA &2fold
X~
3
Fig. 6. () real phase trajectory and (i) ideal sliding
trajectory by [31].
80
70
B0 -
- 50 -
= a0k
¢
e
@ 20
10
ol
- e
0 02 04 06 0.8 1 12 14 16 18 2:
Time [sec]
gl 7. [31oll 2o|st £2lo|d aux

Fig. 7. Sliding surface by [31].
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large chattering of the discontinuous control input is

harmful to real plants, which means that the
2000
U-(‘;
-2000
-4000
Zi 000 |
g -8000 -
8
-10000 -
-12000 -
14000
e,
0 02 04 0.6 08 1 12 14 16 18 2
Time [sec]
a8 8 [31]e oL o
Fig. 8. Continuous control input by [31].
&
3
— (i) state x1
— (i) state x2 [|
1} OTZ ﬂ,l4 ﬁlﬁ ﬂ,‘ﬂ ‘II 1!2 1,I4 W,IE 1‘8 IZ
Time [sec]
a7l 9. HMekE oA mMof ol ofF () zy (i) o,
Fig. 9. () =, and (i) x, time trajectories by proposed
continuous input.
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g
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i 0 1 z 3 4 & i T 8 i 10 11
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Fig. 10. () real phase trajectory by continuous input and

(i) ideal sliding trajectory.
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Fig. 12. Proposed continuously —implemented  control
input.

continuous approximation is essentially required. As
the previous continuous VSS results for comparison,
Fig. 5 shows the output response by Chern & Wu's
method for § = 0.4. The phase trajectory is shown in
Fig. 6. The sliding surface is depicted Fig.7. The
continuous control input is shown Fig. 8. For
0=0.3, Fig. 9 shows the output response by the
proposed continuously implemented input (30). The
phase portraits are depicted in Fig. 10. The controlled
system continuously slide on the sliding surface
without chattering after first reaching. The almost
continuous sliding surface is shown in Fig. 11 and
the effectively continuously implemented input for
practical application is depicted in Fig. 12. Comparing
Fig. 12 with Fig. 4, the chattering of control input is
removed clearly. From the simulation studies, the

effectiveness of the proposed VSCS is proven.

(227)
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IV. Conclusions

In this note, a systematic design of a new robust
nonlinear extended VSCS based on modified state
dependent nonlinear form is presented for the control
of with
mismatched uncertainties and matched disturbance.
After

represented in the form of state dependent nonlinear

uncertain  affine  nonlinear  systems

an affine uncertain nonlinear system is

system, a systematic design of a new robust
nonlinear VSCS with the transformed linear sliding
surface is suggested. The uncertainty of the system
function is separated into the two part, ie, state
dependent term and state independent term, which
can describe more general system than that of [30].
A discontinuous control input corresponding to the
transformed linear sliding surface is proposed. The
closed loop exponential stability by the proposed
control input with transformed linear sliding surface
together with the existence condition of the sliding
be

mismatched

selected sliding surface will
in Theorem 1 for all

uncertainties and matched disturbance. For practical

mode on the

investigated

application of the proposed VSCS to real plants, the
harmful chattering of the discontinuous is effectively
improved without severe performance loss by the
new form being different from that of Chermn &
Wu's, Through a design example and simulation
studies, the usefulness of the proposed controller is
verified. The continuous nonlinear VSCS can be
practically applicable to the real plant.
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