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요 약

본 연구에서는 수정된 상태변수 의존 비선형 형을 바탕으로 부정합조건 불확실성과 정합조건 외란을 갖는 비선형 시스템의

제어를 위한 새로운 둔감한 비선형 연속 가변구조제어기의 체계적인 설계를 제안한다. 부정합조건 불확실과 정합조건 외란 비

선형 시스템을 상태변수 의존 비선형 시스템 형으로 표현한 후 체계적인 둔감한 새로운 제어기 설계를 한다. 대상 시스템의

확장을 위하여 비선형 시스템 함수의 불확정성을 상태변수 의존 항과 비의존 항 두 부분으로 나눈다. 본 비선형 제어는 제어

결과 동특성을 선형으로하기 위하여 그리고 슬라이딩 모드 존재조건을 쉽게 만족시키기 위하여 변환된 선형 슬라이딩 면을 선

정한다. 선정된 슬라이딩 면 위에 슬라이딩 존재조건과 폐루프 지수 안정성을 만족하는 제어입력을 제안한다. 정리를 통하여

증명한다. 본 제어의 실용성을 위하여 가변구조제어의 내재된 특성인 제어입력의 불연속성을 극적으로 개선한다. 설계 예와 시

뮬레이션 연구를 통하여 제안된 제어기의 유용성을 입증한다.

Abstract

In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based

on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with

mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of

state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of

the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for

extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence

condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed

to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed

sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as

the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the

usefulness of the proposed controller is verified.

Keywords : uncertain nonlinear system, variable structure system, sliding mode control, mismatched uncertainties

Ⅰ. Introduction

Stability analysis and controller design for

uncertain nonlinear systems is open problems now[1].
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So far numerous design methodologies exist for the

controller design of nonlinear systems
[2]

. These

include any of a huge number of linear design

techniques[3～4] used in conjuction with gain

scheduling
[5]

; nonlinear design methodologies such as

Lyapunov function approach
[1～2, 6～7, 10～11]

, feedback

linearization method[8～10], dynamics inversion[10],
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backstepping
[11]

, adaptive technique which encompass

both linear adaptive[13] and nonlinear adaptive

control
[14]

, and sliding mode control
[15～26]

etc
[27～29]

.

The sliding mode control(SMC) can provide the

effective means to the problem of controlling

uncertain nonlinear systems under parameter

variations and external disturbances
[15～17]

. One of its

essential advantages is the robustness of the

controlled system to variations of parameters and

external disturbances in the sliding mode on the

predetermined sliding surface, s=0[18]. In [19], for

nonlinear output regulator scheme, sliding mode

approach is applied. The underlying concept is that of

designing sliding submanifold which contains the zero

tracking error submanifold. The convergence to a

sliding manifold can be attained relying on a control

strategy still based on a simplex of control vectors

for multi input uncertain nonlinear systems in [20].

Lu and Spurgeon in 1997 considered the robustness

of dynamic sliding mode control of nonlinear system

which are in differential input-out form with additive

uncertainties in the model
[21]

. The discrete-time

implementation of a second-order sliding mode

control scheme is analyzed for uncertain nonlinear

system, in [22]. Flemming surveyed so called soft

variable structure controls, compared them to other[23].

For 2nd order uncertain nonlinear system with

mismatched uncertainties, a swichting control law

between a first order sliding mode control and a

second order sliding mode control is proposed to

obtain the globally or locally asymptotic stability
[24]

.

The optimal SMC for nonlinear system with

time-delay is suggested in [25]. The nonlinear time

varying sliding sector is designed for a single input

nonlinear time varying input affine system which can

be represented in the form of state dependent linear

time variant system with matched uncertainties
[26]

.

For uncertain affine nonlinear system with

mismatched uncertainties and matched disturbance, a

design of the SMC is reported
[30]

.

In this technical note, the described target plant is

extended rather than [30] in view of the handling

capability. The uncertainty of the nonlinear system

function is separated into the two parts, i.e., state

dependent term and state independent term. A

systematic design of a new nonlinear continuous

VSCS based on modified state dependent nonlinear

form is presented for the control of uncertain affine

nonlinear systems with mismatched uncertainties and

matched disturbance. After an affine uncertain

nonlinear system is represented in the form of

modified state dependent nonlinear system, a

systematic design of a new nonlinear VSCS is

presented. To be linear in the closed loop resultant

dynamics and in order to easily satisfy the existence

condition of the sliding mode, the linear transformed

sliding surface is applied. A corresponding

discontinuous control input is proposed to satisfy the

closed loop exponential stability and the existence

condition of the sliding mode on the linear

transformed sliding surface, which will be

investigated in Theorem 1. To remove the chattering

problems of the discontinuous input as an inherent

property of the VSS, an effective continuous

approximation is made. Through a design example

and simulation studies, the usefulness of the proposed

controller is verified. The organization of the this

paper is as follows. In section Ⅱ, a descriptions of

plants, linear transformed sliding surface, and a

corresponding control input are presented as the main

results. A design example and simulation study is

carried out in section Ⅲ. Finally a concluding

remarks are given in section Ⅳ.

Ⅱ. A Nonlinear Continuous Variable Structure 

Control System(VSCS)

1. Description of plants

Consider an affine uncertain nonlinear system

 ′  ′  (1)

where ∈  is the state,  is its initial state,

∈  is the control, ′∈  and

∈   ≥  , ≠  for ∈  and
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for   ≥  are of suitable dimensions, and ′
implies bounded matched external disturbances.

Assumption[26]

A1:′ is continuously differentiable.

Then, uncertain nonlinear system (1) can be

represented in more affine nonlinear system of

modified state dependent coefficient form
[27～28, 30]

  ∆  ∆ 
  ∆  ′

     
(2)

 ∆ ∆ 
∆ ′ (3)

where   and  is each nominal value such

that

′ ∆∆(4a)

   ∆  (4b)

respectively, ∆ and ∆ are mismatched

uncertainties, ∆  is matched uncertainties,

′ is matched external disturbance, and  is

the lumped totally mismatched uncertainties,

respectively. The uncertainty of ′ is separated

into the tow parts as in (4a). The form of (4a) can

handle more general plants than that of [27] and [28] so

it is extended. The assumptions are made to clearly

describe the plant under consideration

Assumption:

A2: The pair    is controllable for

∈  and for  ≥ 

A3: The lumped uncertainties  is bounded

A4: is bounded if  is bounded.

A5: The nominal value of   is constant, i.e.,

    .

For a non zero column vector  as the design

parameter later in sliding surface, the following

assumptions are satisfied

A6:  and    have the full rank, i,e

are invertible

A7:    
 
 ∆ ∆ and

∆  ≤    .

2. Linear Transformed Sliding Surface

To control uncertain nonlinear system (1) or (2)

with resultant linear dynamics, the linear sliding

surface used in this design is as follows:

  
 


  
 
 

(5)

which is transformed one
[15]

so as to satisfy the

existence condition of the sliding mode on the

predetermined sliding surface for uncertain nonlinear

system (2)
[32]

. The equivalent control input of the linear

transformed sliding surface is obtained by using  
[15] as

   
 

 
  

 
  

 


  ∆ 
    

 
  

 
  

 


 ∆  ′
(6)

This control input can not be implemented because

of the uncertainties and external disturbance, but only

used to obtaining the ideal sliding dynamics. The

ideal sliding mode dynamics of the sliding surface (5)

can be derived by the equivalent control approach
[16]

as

   

  
 

    
(7)

   , (8)

       
 
   (9)

where  is the state of the ideal sliding mode

dynamics for ≥ where  is the reaching time.

The solution of (6) identically defines the sliding
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surface after reaching. Hence to design the sliding

surface as stable, this ideal sliding dynamics is

designed to be stable. To choose the stable gain based

on the Lyapunov stability theory
[10～11]

, the ideal sliding

dynamics (7) is represented by using the nominal plant

of (2) as

       (10)

        

To select the stable gain, take a Lyapunov function

candidate
[10～11]

as

      (11)

The derivative of (11) becomes

      
 

   
(12)

If one takes the control input as

  
  (13)

and    for ∈  and for   ≥  is

 
   (14)

then

    
 

      
      
 

  
   

≤ m in


≤ 

(15)

Therefore the stable gain is chosen as

  
  or

     
 
    (16)

3. Control Input

The corresponding control input is proposed as

follows:

 ∆   (17)

where  is a static nonlinear feedback gain,

∆ is a state dependent switching gain,  is a

feedback gain of the sliding surface itself, and  is

a sliding surface dependent switching gain,

respectively as

 
  


  or


 

(18)

∆ ∆    (19)

∆ 









≥min∆
max

 
 
∆ 

∆ 




 
 



 

≤min∆
min

 
 
∆ 

∆ 




 
 



 

(20)

  (21)

 min∆
max  


 ∆′  (23)

The real sliding dynamics by the proposed control

(17) with the linear transformed sliding surface (5) is

obtained as follows:

   

 

   

 



∆
∆
′ 






   

 




∆∆
∆
′ 






   


 

   

 ∆∆

∆∆∆
   


 ∆′ 

∆
    

 
 ∆ ∆

 ∆∆ ∆

   
 
 ∆  ′

 ∆sin  
(24)

The closed loop stability by the proposed control
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input with sliding surface together with the existence

condition of the sliding mode will be investigated in

next Theorem 1.

Theorem 1: If the sliding surface is designed in

the stable, i.e. stable design of , the proposed

input with Assumption A1-A7 satisfies the existence

condition of the sliding mode on the sliding surface

and exponential stability.

Proof; Take a Lyapunov function candidate as

  

 (25)

Differentiating (25) with respect to time leads to

and substituting (24) into (26)

   

    
 
 ∆ 

 ∆    ∆ ∆
   ∆ 

    
 
 ∆  ′

   ∆  

  ≤ 
   min ∆

 


 

(26)

From (26), the following equation is obtained as

 ≤  (27)

≤ 
   (28)

And the second order derivative of  becomes

 

 

       
 
  ∞

(29)

and by Assumption A4  is bounded which

completes the proof of Theorem 1.

The switching of discontinuous part of the control

input (17) results in the chattering problems because

that may be harmful to practical plants. Hence the

continuous approximation of the switching part of the

discontinuous input is essentially necessary. Using

the saturation function, one can effectively make the

input be continuous for practical application as

  

 ∆  
 (30)

for a positive suitable constant    , which is

different from that of Chern & Wu's continuous

approximation
[31]

. The discontinuity of the control input

can be dramatically improved without severe

performance deterioration.

Ⅲ. Design Example and Simulation Studies

Consider a second order affine uncertain nonlinear

system with mismatched uncertainties and matched

disturbance

  sin    sin   (31)

 sin     sin     
 sin    sin  sin 

Since (31) satisfy the Assumption A1, (31) is

represented in state dependent coefficient form as













sin  

 sin









 

sin sin









 sin
sin







 
sin

(32)

where the nominal parameter   and  

and mismatched uncertainties ∆  and

∆, and matched uncertainty ∆ are

 


 
 



,  







,

∆ 



sin  

 sin 



,

∆  

sin
sin




 (33)

∆  


sin sin





To design the stable transformed linear sliding
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surface,  is selected as

    


 
 



 (34)

in order to have the two poles at   and

  . The P in (11) is chosen as




  
 



  (35)

so as to be


 



 
 



  (36)

Hence, the continuous feedback gain is chosen as

  
      (37)

Therefore, the coefficient of the linear transformed

그림 1. (i) 과 (ii)  의 시간궤적

Fig. 1. (i)  and (ii)  time trajectories.

그림 2. (i) 실제 상 궤적과 (ii) 이상 슬라이딩 궤적

Fig. 2. (i) real phase trajectory and (ii) ideal sliding

trajectory.

sliding surface is determined as

       (38)

The selected gains in the discontinuous control

그림 3. 슬라이딩 면

Fig. 3. Sliding surface.

그림 4. 불연속 제어입력

Fig. 4. Discontinuous control input.

그림 5. [31]에 의한 (i)  과 (ii)  의 시간궤적

Fig. 5. (i)  and (ii)  time trajectories by [31].
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input (17) satisfying the equations (19)-(23) are as

follows:

∆    i f   
  i f    ,

∆    i f   
  i f    (39)

   (40)

 


 (41)

The simulation is carried out under 0.1[msec]

sampling time and with      initial state.

Fig. 1 shows (i)  and (ii)  time trajectories. The

phase trajectory(i) and ideal sliding trajectory(ii) are

depicted in Fig. 2. The sliding surface  is shown

in Fig. 3. The control input is depicted in Fig. 4. The

그림 6. [31]의 (i) 실제 상 궤적과 (ii) 이상 슬라이딩 궤

적

Fig. 6. (i) real phase trajectory and (ii) ideal sliding

trajectory by [31].

그림 7. [31]에 의한 슬라이딩 aux

Fig. 7. Sliding surface by [31].

large chattering of the discontinuous control input is

harmful to real plants, which means that the

그림 8. [31]의 연속 입력

Fig. 8. Continuous control input by [31].

그림 9. 제안된 연속 제어 입력에 의한 (i) 과 (ii) 
Fig. 9. (i)  and (ii)  time trajectories by proposed

continuous input.

그림 10. 제안된 연속 제어 입력에 의한 실제 상 궤적

Fig. 10. (i) real phase trajectory by continuous input and

(ii) ideal sliding trajectory.
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그림 11. 제안된 연속제어 입력에 의한 슬라이딩 면

Fig. 11. Sliding surface by proposed continuous input.

그림 12. 제안된 연속 제어 입력

Fig. 12. Proposed continuously implemented control

input.

continuous approximation is essentially required. As

the previous continuous VSS results for comparison,

Fig. 5 shows the output response by Chern & Wu's

method for    . The phase trajectory is shown in

Fig. 6. The sliding surface is depicted Fig.7. The

continuous control input is shown Fig. 8. For

   , Fig. 9 shows the output response by the

proposed continuously implemented input (30). The

phase portraits are depicted in Fig. 10. The controlled

system continuously slide on the sliding surface

without chattering after first reaching. The almost

continuous sliding surface is shown in Fig. 11 and

the effectively continuously implemented input for

practical application is depicted in Fig. 12. Comparing

Fig. 12 with Fig. 4, the chattering of control input is

removed clearly. From the simulation studies, the

effectiveness of the proposed VSCS is proven.

Ⅳ. Conclusions

In this note, a systematic design of a new robust

nonlinear extended VSCS based on modified state

dependent nonlinear form is presented for the control

of uncertain affine nonlinear systems with

mismatched uncertainties and matched disturbance.

After an affine uncertain nonlinear system is

represented in the form of state dependent nonlinear

system, a systematic design of a new robust

nonlinear VSCS with the transformed linear sliding

surface is suggested. The uncertainty of the system

function is separated into the two part, i.e., state

dependent term and state independent term, which

can describe more general system than that of [30].

A discontinuous control input corresponding to the

transformed linear sliding surface is proposed. The

closed loop exponential stability by the proposed

control input with transformed linear sliding surface

together with the existence condition of the sliding

mode on the selected sliding surface will be

investigated in Theorem 1 for all mismatched

uncertainties and matched disturbance. For practical

application of the proposed VSCS to real plants, the

harmful chattering of the discontinuous is effectively

improved without severe performance loss by the

new form being different from that of Chern &

Wu's
[31]

. Through a design example and simulation

studies, the usefulness of the proposed controller is

verified. The continuous nonlinear VSCS can be

practically applicable to the real plant.
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