• Title/Summary/Keyword: 연속회분식 반응기

Search Result 98, Processing Time 0.021 seconds

Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性))

  • Kim, Hwan Gi;Park, Ro Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1990
  • In this paper, the experimental study was carried out for the removal of olive oil in wastewater by the use of Biological Fluidized Bed(BFB) with the reticulated polypropylene sheets as media. The nonbiodegradable olive oil, one of the animal and vegitable oil, was used bacause of the relative simplicity of constitution. Biological degraciability and removal characteristics of emulsified olive oil were studied by batch and continuous experiments respectively. From the results of batch experiments, it was observed that the emulsified olive oli used in BFB reactor was absorbed by media and sludge in about 12 hours, and degradation of the absorbed olive oli was mostly completed for 24 hours. The functional relationship of Michaelis-Menten's Enzyme reaction equation exists between oil concentration and maximum specific rate of olive oil. From the continuous experiments for the removal of olive oil using BFB reactor, it was proved that the substrate removal rate coefficient $k=0.004d^{-1}$, which is the first order kinetics. It was apperared that oxygen utlization coefficients for synthesis(a') and endogeneous respiration(b') of microorganisms in the reactor are respectively 0.85mg $O_2/mg$ $COD_{cr}$ and 0.011mg $O_2/mg$ BVS. day.

  • PDF

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

A Simultaneous Removal of Organic, Nitrogen and Phosphorus According to the Distribution of Aeration Time in (AO)2 SBBR ((AO)2 연속 회분식 생물막 반응기에서 포기 시간 배분에 따른 유기물 및 질소와 인의 동시 제거에 관한 연구)

  • Park Young-Seek;Kim Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.861-871
    • /
    • 2005
  • This study was carried out to get more operational characteristics of Anoxic(anaerobic)-Oxic-Anoxic-Oxic $(AO)_2$ sequencing batch biofilm reactors (SBBRs) at the low TOC concentration, The operating time in anoxic (anaerobic) time to oxic time was I : I. Experiments were conducted to find the effects of the aeration time distribution on the organic matters and nutrients removal. Three lab-scale reactors were fed with synthetic wastewater based on glucose as carbon source. During studies, the operation mode was fixed. The first aeration time to the second aeration time in SBBR-I was 2 : 3, and those in SBBR-2 and SBBR-3 were I : 4 and 3 : 2, respectively. The organic removal efficiency didn't show large difference among three reactors of different aeration time distribution. However, from these study results, the optimum aeration time distribution in the first and the second aeration time for biological nutrient removal was shown as 3 : 2. The release of phosphorus was inhibited at the second non-aeration period because of the low TOC concentration and the nitrate produced by the nitrification at the first aeration period.

실관 생물반응기대 고정화된 Enterococcus faecalis RKY1에 의한 숙신산 생산특성

  • 위영중;윤종선;류화원
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2002
  • Enterococcus faecalis RKY1 cells were immobilized in an asymmetric hollow fiber bioreactor for application to the continuous production of succinic acid. The media was fed into shell-side of the module using a peristaltic pump, and the products were collected through lumen-side outlet. The number of hollow fibers within the module did not affect the bioreactor efficiency in the transverse operated hollow fiber bioreactor. The steady state at the outlet of hollow fiber bioreactor was reached after 24 hr cultivation at flow rate of 0.25 mL/mim, 12 hr at 0.5 L/min, and 9 hr at 1.0 mL/mm, respectively. The succinate and fumarate concentrations within the hollow fiber bioreactor, however, were as changeful as increasing the flow rate. During continuous operation with the flow rates between 0.5 and 2.0 mL, the productivity of succinate was 8.0-10.9 g/L $.$ hr at 30 g/L fumarate, 4.9-14.9 g/L hr at 50 g/L fumarate, and 7.2-17.1 g/L hr at 80 galL fumarate, respectively.

Biodegradation of VOC Mixtures using a Bioactive Foam Reactor II: Analysis of Microbial Community (계면활성제 미생물반응기의(혼합 VOCs) 생분해 II: 미생물의 군집해석)

  • Jang, Hyun Sup;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.695-701
    • /
    • 2006
  • A toluene-degrading bacterial strain was isolated from a mixed culture that was maintained using toluene as a sole carbon and energy source. The isolated bacterium was classified as Pseudomonas sp. TBD4 based on the close relationship to bacteria belonging to this genus. A bottle study to determine biodegradation rates of individual aromatic compounds showed that the biodegradation was faster in the order of toluene, benzene, styrene, and p-xylene. However, when various mixtures were subjected to TDB4, styrene was degraded at the highest rate, indicating that both toluene and p-xylene could stimulate the degradation of other substrates whereas styrene played as an inhibitor. In addition, the mixed culture and TDB4 were inoculated to the bioactive foam reactor (BFR), and the reactor performance and the corresponding change of microbial community were monitored using the fluorescent in situ hybridization (FISH) method. When an inlet concentration of the VOC mixture increased to greater than 250 ppm, the overall removal efficiency dropped significantly. The FISH measurement demonstrated that the ratio of TDB4 to the total bacteria also decreased to less than 20% along with the decline in removal efficiency in the BFR. As a result, the periodic addition of the pre-grown TDB4 might have been beneficial to achieve a stable performance in the BFR operated over an extended period.

Nitrogen Removal in Livestock Wastewater Using Sequencing Batch Reactor (SBR을 이용한 축산폐수의 질소 제거)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Sang-Hyung;Lim, Jae-Lim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.61-67
    • /
    • 2003
  • A new precess which consists of pre-dewatering device, post composting for solid phase and post sequencing batch reactor(SBR) for liquid phase was designed. Nitrogen in supernatants of dewatering device was removed by sequencing batch reactor. Experiments were carried out to investigate the SBR operation modes such as fill ratio, SRT, and operation cycle. The optimum fill ratio, SRT and aeration/non-aeration time were 1/12, 15days, and 2hr aeration / 1hr non aeraion, respectively. Methanol as an external carbon source increased denitrification when step feeding method was applied, not single feeding method.

  • PDF

Interpretation of Simultaneous Nitrification & Denitrification Reaction by Modifying Activated Sludge Models(ASMs) (활성슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석)

  • Kim, Hyo-Su;Kim, Ye-Jin;Lee, Sung-Hak;Moon, Tae-Sup;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • Simultaneous nitrification and denitrification means that nitrification and denitrification occur concurrently in the same reaction vessel under low DO concentration. Some mathematical models developed to simulate simultaneous nitrification and denitrification reaction, but they have the complex model structures or have limitations of model application. To solve these problems, if possible that predict the behavior of simultaneous nitrification and denitrification reaction by activated sludge model, structures of the model is less complex than previous models and applies the various operation conditions. But original activated sludge models have difficulties in representing the denitrification reaction under aerobic condition. So the aim of this study is to interpret simultaneous nitrification and denitrification reaction by modifying activated sludge model. Original activated sludge model No.1(ASM1) was selected and modified. The simulation result in modified ASM1 predicted appropriately for the measured data. This indicates the structures of ASM1 are properly improved for interpretation of simultaneous nitrification and denitrification reaction.

Growth Kinetics and Sporulation of Bacillus thuringiensis in High Cell Density Culture (고농도 세포배양에서 Bacillus thuringiensis의 세포 성장과 포자 형성 속도)

  • 강병철;장호남
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • High cell density culture of Bacillus thuringiensis was conducted in fed-batch culture and TCRC using a bioreactor incorporating ceramic membrane filter. Cell growth of B. thuringiensis in fed-batch culture increased linearly, which was well matched by the results of cell growth modeling. In spite of the slower growth rate during fed-batch culture, no spore formation was observed, which was contrary to the results of continuous culture. Changing culture mode to batch culture after fed-batch operation induced a 2.7$\times$$10^9$ CFU/mL spore concentration using a 300 g/L glucose feed concentration. In TCRC operation incorporating ceramic filter within the bioreactor, the effect of glucose feed concentrations on the cell growth and spore formation of B. thuringiensis was determined. A maximum cell concentration of 1.8$\times$$10^{10}$ CFU/ml, which corresponds to 82.6 g-cell/L, was obtained in the TCRC using a 50 g/L glucose feed concentration. In the TCRC, cell growth increased linearly and glucose concentration was limited, which agreed well with the results of cell growth modeling. No spore formation was observed except when 1 g/L of glucose was fed. Changing to batch culture induced a 1.2$\times$$10^{10}$ CFU/mL of spore concentration, which was the highest spore concentration obtained among the various culture modes examined. The optimal glucose feed rate was found to be 0.55 g-glucose/h.

  • PDF

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Successful start-up of pilot-scale single-stage ANAMMOX reactor through cultivation of ammonia oxidizing and ANAMMOX bacteria (암모니아 산화균 및 아나목스균의 배양을 통한 파일롯 규모 단일 아나목스 반응기의 성공적인 시운전)

  • Choi, Daehee;Jin, Yangoh;Lee, Chulwoo;Jung, Jinyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.371-379
    • /
    • 2018
  • The lack of seed sludges for Ammonium Oxidizing Bacteria (AOB) and slow-growing ANaerobic AMMonium OXidation (ANAMMOX) bacteria is one of the major problem for large-scale application. In this study, $24m^3$ of single-stage SBR (Sequencing Batch Reactor) was operated to remove nitrogen from reject water using AOB and ANAMMOX bacteria cultivated from activated sludge in the field. The ANAMMOX activity was found after 44 days of cultivation in the ANAMMOX cultivation reactor, and then $0.66kg\;N/m^3/d$ of the nitrogen removal rate was achieved at $0.78kg\;N/m^3/d$ of the nitrogen loading rate at 153 days of cultivation. The AOB cultivation reactor showed $0.2kg\;N/m^3/d$ of nitrite production rate at $0.4kg\;N/m^3/d$ of nitrogen loading rate after 36 days of operation. The cultivated ANAMMOX bacteria and AOB was mixed into the single-stage SBR. The feed distribution was applied to remove total nitrogen stably in the single-stage SBR. The nitrogen removal rate in the single-stage SBR was gradually enhanced with an increase of specific activities of both AOB and ANAMMOX bacteria by showing $0.49kg\;N/m^3/d$ of the nitrogen removal rate at $0.56kg\;N/m^3/d$ of the nitrogen loading rate at 54 days of operation.