본 논문에서는 특정 매개변수의 입력 없이 속성(attribute)에 따른 목적속성(class)값의 분포를 고려하여 연속형(conti-nuous) 값을 범주형(categorical)의 형태로 변환시키는 새로운 방법을 제안하였다. 각각의 속성에 대해 목적속성의 분포를 1차원 공간에 사상(mapping)하고, 각 목적속성의 밀도, 다른 목적속성과의 중복 정도 등의 기준에 따라 구간을 군집화 한다. 이렇게 생성된 군집들은 각각 목적속성을 예측할 수 있는 확률적 수치에 기반한 것으로, 각 속성이 제공하는 정보의 손실을 최소화하는 이산화 경계선을 갖고 있다. 제안된 데이터 이산화 방법의 향상된 성능은 C4.5 알고리즘과 UCI Machine Learning Data Repository 데이터를 사용하여 확인할 수 있다.
본 논문에서는 특정 매개변수(parameter)의 입력 없이 속성(attribute)에 따른 목적속성(class)값의 분포를 고려하여 연속형(continuous) 속성 값을 범주형(categorical)의 형태로 변환시키는 새로운 방법을 제안하였다. 각각의 속성에 대해 목적속성의 분포를 1차원 공간에 사상(mapping)하고, 각 목적속성의 밀도, 다른 목적속성과의 중복 정도 등의 기준에 따라 구간을 군집화 한다. 이렇게 생성된 군집들은 각각 목적속성을 예측할 수 있는 확률적 수치에 기반한 것으로, 각 속성이 제공하는 정보의 손실을 최소화 하는 이산화 경계선을 갖고 있다. 제안된 데이터 이산화 방법의 향상된 성능은 C4.5 알고리즘과 UCI Machine Learning Data Repository 데이터를 사용하여 확인할 수 있다.
임상 데이터마이닝에서 최적의 특징 집합을 선택하는 것은 주어진 데이터로부터 생성된 모델의 복잡성을 줄일 뿐만 아니라 유용성을 향상시키는 데에 매우 중요하고, 선택된 특징들의 임계값은 질병의 감별진단을 위해 임상 전문가의 결정기준으로 사용된다. 본 논문에서는 데이터의 공간적인 분포, 즉 중첩영역에서 중복 속성값을 포함하는 데이터의 분리성 정도를 평가함으로써 연속형 속성을 가진 데이터에 대한 퍼지 이산화기법을 제안한다. 제안된 방법에서 중복 속성값의 가중치 평균값은 각 특징의 임계값(즉 경계값)을 결정하기 위해서 사용되었고, 러프집합은 전체 특징들 중에서 중요특징들의 집합을 선택하기 위해서 이용하였다. 제안된 방법의 타당성을 검증하기 위해 호흡곤란을 주호소로 내원한 668명의 환자 데이터를 근거로 3가지 이산화방법과 제안된 이산화방법에 대한 실험을 수행하였다. 실험결과, 퍼지분할을 기반으로 한 이산화방법이 하드분할을 기반으로 한 이산화방법에 비해서 평균 분류정확도와 G-mean 성능에서 보다 좋은 결과를 제공함을 확인하였다.
본 논문에서는 시간의 흐름에 따라 새로운 데이터를 지속적으로 학습하고 성장할 수 있는 연속 학습 기반 대화형 AI 에이전트를 제안한다. 연속학습 기반 대화형 AI 에이전트는 태스크 관리자 (Task Manager), 사용자 속성 추출(User Attribute Extraction), 자동 확장 지식 그래프(Auto-growing Knowledge Graph), 크게 3가지 요소로 구성된다. 태스크 관리자는 사용자와의 대화에서 새로운 데이터를 발견하면 이전에 학습한 지식을 통해 새로운 태스크를 생성한다. 사용자 특성 추출 모델은 새로운 태스크에서 사용자의 특성을 추출하고, 자동 확장 지식 그래프는 새로운 외부 지식을 지속적으로 학습할 수 있도록 한다. 한정된 데이터셋을 기반으로 학습된 기존 대화형 AI 에이전트와 달리, 본 논문에서 제안하는 방법은 지속적인 사용자의 특성과 지식 학습을 기반으로 대화를 가능하게 한다. 연속학습 기술이 적용된 대화형 AI 에이전트는 사용자와의 대화가 축적될수록 개인 맞춤형 대응이 가능하며, 새로운 지식에도 대응이 가능하다. 본 논문에서는 시간에 따른 대화 생성 모델의 성능 변화 실험을 통해 제안하는 방법의 가능성을 검증한다.
최근 우리나라는 가계신용의 급신장과 신용불량의 급증 등으로 개인 신용부문이 금융기관의 건전성 유지에 부정적인 영향을 미치고 있다. 이러한 잠재적 문제를 사전에 방지하기 위해 금융기관 등에서는 개인 신용평가에 대한 수요가 커지고 있는 실정이다. 주어진 데이터로부터의 반복적인 학습 과정을 거쳐 패턴을 분류하고 또한 모델과 학습 방법에 따라 입력변수와 목적변수의 속성이 연속형이나 이산형인 경우를 모두 다룰 수 있는 신경망 모델은 개개인의 다양하고 복잡한 데이터를 입력변수로 받아서 신용등급을 나누는데 우수한 능력을 보여줄 수 있다. 본 논문에서는 신경망 모델을 이용해 개인의 신용등급을 객관적이고 일률적으로 평가해서 등급을 나누어주는 알고리즘을 제안하고자 한다.
본 연구에서는 인공지능 대화형 에이전트인 스마트 스피커의 지능형 에이전트로서의 속성, 즉 자율성, 사회성, 반응성, 능동성, 시간연속성, 목표지향성에 대하여 이용자들이 일상적 상호작용을 통하여 어떤 기대를 가지는지, 또한 어떤 기대격차를 갖는지 살펴보고자 하였다. 이를 위해 스마트 스피커 이용자들을 대상으로 반구조화 인터뷰(semi-structured interview)를 진행하고 그라운드 이론에 기반하여 분석하였다. 연구 결과 사람들은 기술수준의 한계로 인해 스마트 스피커의 사회성이나 인간다움에 대해 큰 기대격차를 갖고 있었다. 스마트 스피커의 반응성에 대해서는 긍정적인 기대격차를 갖는 것으로 드러났고, 시간연속적으로 정보를 기억하는 것에 대해서는 정보의 민감성 정도나 제시방식에 따라 양가적 기대격차가 나타났다. 자율적인 추천에 대해서는 낮은 기대수준이 나타났고 능동적인 말걸기에 대해서는 맥락에 맞는 경우에만 선호하는 것으로 나타났다. 본 연구는 스마트 스피커와 상호작용하는 방식을 설계하고 기대 수준을 관리하는데 있어서 함의점을 제시한다.
Since most real-world application data involve continuous-valued attributes, properly addressing the discretization process for constructing a decision tree is an important problem. A continuous-valued attribute is typically discretized during decision tree generation by partitioning its range into two intervals recursively. In this paper, by removing the restriction to the binary discretization, we present a hybrid multi-interval discretization algorithm for discretizing the range of continuous-valued attribute into multiple intervals. On the basis of experiment using semiconductor etching machine, it has been verified that our discretization algorithm constructs a more efficient incremental decision tree compared to previously proposed discretization algorithms.
최근에 R은 여러 분야에서 많이 사용되고 있다. 특히 모의실험(simulation)이나 통계학 관련 연구에 많이 사용되고 있다. 모의실험을 하는 경우에는 많은 반복으로 인해 R 프로그램의 수행 속도가 매우 중요하다. 또한 데이터마이닝 분야에서도 R을 많이 사용하고 있다. 우리는 데이터 마이닝에서 데이터의 전처리 과정 중 Fayyad & Irani 방법을 사용하여 연속형 변수를 이산화하는 실험을 하였으며, 이를 위해 R을 사용하였다. 이 프로그램은 재귀 함수를 이용하고 이런 과정에서 빈도표 작성, information계산, 빈도표의 분할, 정지 규칙 등의 여러 함수를 사용하게 되어있다. 우리가 작성한 R 로드를 사용하여 UCI DB의 Iono 자료를 (속성이 35개, 사례수가 약 1000개정도) 이산화 하였을 때 7초 이상의 상당한 시간이 소요된다. 반면에 JAVA로 만들어진 Weka에서 똑같은 Fayyad & Irani 방법을 수행했을 때 위와 같은 큰 자료를 이산화하는 속도가 매우 빨라 수행시간은 거의 무시할 만하였다. 이런 차이점을 보고 R 프로그램의 수행 속도를 늘이는 방법을 찾게 되었다. 이 본 발표에서는 R 코드 중 시간이 많이 소요되는 것들을 몇 가지 선정하고 이들을 더 효율적으로 만들 수 있는 코드를 작성하여 이들 코드의 수행속도를 비교하였다. 또한 몇 가지 명령에 대해서는SAS와도 비교하였다.
Data mining is widely used for turning huge amounts of data into useful information and knowledge in the information industry in recent years. When analyzing data set with continuous values in order to gain knowledge utilizing data mining, we often undergo a process called discretization, which divides the attribute's value into intervals. Such intervals from new values for the attribute allow to reduce the size of the data set. In addition, discretization based on rough set theory has the advantage of being easily applied. In this paper, we suggest a discretization algorithm based on Rough Set theory and SOM(Self-Organizing Map) as a means of extracting valuable information from large data set, which can be employed even in the case where there lacks of professional knowledge for the field.
본 논문은 프리즘 구조물의 집광효과를 이용하여 옥외용 사이니지 이산형 LED 패널의 광학적 불연속성을 개선할 수 있는 방법적 접근에 관한 것이다. 광투과성이 우수한 Polycarbonate에 MEMS(Microelectromechanical systems) 공정 및 극초단파(Femto-second) 레이저를 이용하여 프리즘 형태를 패터닝을 하였다. 패터닝된 polycarbonate는 light guide film의 역할을 하여 서로 다른 디스플레이 패널에서 발생하는 빛을 프리즘 구조에 의해 한 곳으로 모이게 함을 확인하였다. Polycarbonate와 디스플레이 패널의 간격에 따라 디스플레이 패널간의 거리를 조절할 수 있었으며 한 곳으로 모인 빛은 마치 두 디스플레이 패널이 연결된 것과 같은 효과를 나타내었다. 이는 아웃도어 사이니지용 디스플레이 패널에서 발생하는 문제점인 광학적 불연속성을 개선할 수 있을 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.