• Title/Summary/Keyword: 연속적 폭굉속도

Search Result 2, Processing Time 0.016 seconds

Determination of Combustion Propagation Velocity of Thermite Reaction Mixture Using Continuous VOD Measurement System (연속적 폭굉속도 측정 시스템을 이용한 테르밋 반응 혼합물의 연소전파속도 측정에 관한 연구)

  • Kim, Min-Seong;Kang, Hyeong-Min;Jeong, Sang-Sun;Jeong, Yun-Yeong;Park, Hoon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • The objective of this study is to develop a method for monitoring continuously the combustion propagation behavior of commercial thermite reaction mixtures using conventional continuous VOD (velocity of detonation) system. In order to monitor the combustion front propagation with elapsed time during thermite reaction, the VOD system employs two types of commercial VOD probes and one self-made probe: VOD PROBEROD-OS, VOD PROBEROD-HS and VOD PROBEROD-ES, respectively. Among the probes, the only self made VOD PROBEROD-ES successfully demonstrates the velocity of combustion propagation (VOC) with elapsed time. It was found that VOC of the thermite reaction mixture inside a steel tube has been reached around 200m/s within 100mm distance from the ignition and dramatically increased up to about twice the speed of sound in the range between 100mm and 300mm distance. Finally the VOC reached up to around 800m/s. This results imply that it is necessary to use over 300mm long cartridge of thermite reaction mixture in order to achieve normal VOC of the mixture.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.