• Title/Summary/Keyword: 연속스캐닝 레이저도플러 진동계

Search Result 5, Processing Time 0.022 seconds

Mode Shape Reconstruction of an impulse excited structure using HHT and CSLDV (HHT와 연속스캐닝 진동계를 이용한 임펄스가진된 구조물의 모드 형상 복원)

  • Kyong, Yong-Soo;Kim, Dae-Sung;Dayou, Jedol;Park, Kyi-Hwan;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.484-490
    • /
    • 2008
  • For CSLDV, the Chebyshev demodulation (or polynomial) technique and Hilbert transform approach have been used for mode shape reconstruction with harmonic excitation. In this paper, the Hilbert-Huang transform approach was applied as an alternative to impact excitation cases in terms of a numerical approach. The vibration of the tested structure is modeled using impulse response functions. In order to verify this technique, a simply supported beam was chosen as the test rig. With additional innovative steps which are the ideal-band pass filter and the nodal point determination, Hilbert-Huang transformation can be used for a good mode shape reconstruction even in the impact excitation case.

  • PDF

Investigation about unexpected effects of Chebyshev and Hilbert approach on using CSLDV (연속 스캐닝 진동계를 위한 체비세프와 힐버트 방식의 비교)

  • 왕세명;경용수;박기환;라종필;김경석;강기수;김창식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.414-419
    • /
    • 2003
  • There are some methods fur extracting mode shapes from a continuously scanned data such as a modulation, Chebyshev polynomial, and Hilbert approach. In this paper, Chebyshev and Hilbert approaches were investigated through the numerical experiment first. As some experimental parameters were altered with small quantities, data were checked and plotted. From those results, the effects of unexpected parameters will be configured. And then, it will be actually helpful to select the proper method for specific testing environments.

  • PDF

Modal Identification of a randomly excited 1-D structure using Scanned data (스캐닝 데이터를 이용한 랜덤 가진된 일차원 구조물의 모달 분석)

  • 경용수;왕세명;김상명;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.241-246
    • /
    • 2002
  • Usually vibration properties are obtained from frequency response functions or impulse response functions of a system. Since the contact type sensors can affect the characteristics of vibrating systems, the non-contact type sensors such as laser Doppler vibrometer (LDV) are being widely used. Currently researches are being carried out in terms of modal analysis using a scanning vibrometer. For the continuous scan; the Chebyshev demodulation (or polynomial) is apparently suggested to extract the mode shapes. With single frequency sinusoidal excitation, this approach is well fitted. In this research, the Chebyshev demodulation technique has been applied to the impact excitation case. The vibration of the tested structure is modeled using impulse response functions. The technique is also adopted to the random excitation case. In order to verify the technique, a simply supported beam was chosen as the test rig. The calculation modules are developed by using MATLAB$\^$(R)/ in WindowsNT$\^$(R)/ environment.

  • PDF

Measurement of Vibration Mode Shape By Using Hilbert Transform (Hilbert Transform을 이용한 진동모드 측정)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.392-397
    • /
    • 2001
  • This paper concerns on modal analysis of mechanical structures by using a continuous scanning laser Doppler vibrometer. In modal analysis the Hilbert transform based approach is superior to the Fourier transform based approach because of its fine accuracy and its flexible experimental settings. In this paper the Hilbert transform based approach is extended to measure area mode shape data of a structure by simply modifying the scanning pattern ranging the entire surface of the structure. The effectiveness of this proposed method is illustrated along with results of numerical simulation for a rectangular plate.

  • PDF