• Title/Summary/Keyword: 연속거동

Search Result 694, Processing Time 0.018 seconds

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

Vertical Distribution and Contamination of Trace Metals in Sediments Within Hoidong Reservoir (회동저수지 호저퇴적물의 미량원소 오염 및 수직적 분산특성)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Youm, Seung-Jun;Lee, Wook-Jong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.587-604
    • /
    • 2007
  • In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF