• Title/Summary/Keyword: 연소 프로그램

Search Result 187, Processing Time 0.031 seconds

가연성물질의 폭발 안전 특성치 예측

  • 하동명
    • Bulletin of the Korean Institute for Industrial Safety
    • /
    • v.1 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • 화학 공정 설계의 요지 가운데 하나는 공정모사 프로그램이다. 최근에는 공정모사 프로그램에 적용하기 위해 화재·폭발 특성치 연구가 활발히 진행되고 있다. 이는 공장을 건설하기 전에 안전성평가가 먼저 이루어져야 하기 때문이다. 이러한 안전성평가에 관한 관심은 더 정확한 자료뿐만 아니라 더 많은 성분에 대한 자료의 필요성을 증대시키고 있다. 공정에서 가연성물질을 취급에 있어 밸브의 조작실수, 배관접합부파손 등으로 인해 주위에 공기와 혼합되어 착화원에 의해 화재 및 폭발이 발생할 수도 있으며, 또한 유해물질이 유출되는 경우도 있다. 산업현장에서 화재 및 폭발의 위험을 최소화하기 위해서는 공정의 안전과 최적화 조작이 이루어져야 하는데, 이를 위해 우선 작업 조건 하에서 취급물질의 연소 특성치 파악이 필요하다.(중략)

  • PDF

Analysis for Operation Point Change in Mode Transition at the Turbopump-Gas Generator Coupled Test (터보펌프-가스발생기 연계시험의 모드 변환 중간 작동점 분석)

  • Nam, Chang-Ho;Kim, Seung-Han;Park, Soon-Young;Kim, Cheul-Woong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The characteristics at the intermediate operation point of the turbopump-gas generator(TP-GG) coupled test were investigated by analytical method. The pump outlet pressure, gas generator mixture ratio, gas generator pressure, and temperature were examined considering risk minimization of test. The engine system shows different behavior from the TP-GG coupled test at the intermediate operation point since the combustion pressure feeds back to the flow rate in the lines. The advanced valve changes in the combustor line helps less risky mode transition.

Calculation of thermodynamical equilibrium composition of combustion gases (燃燒氣體의 熱力學的 平衡組成計算에 관한 硏究)

  • 허병기;이청종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.177-188
    • /
    • 1987
  • A compute program based on the minimization of total Gibbs' free energy and enthalpy balance was developed to calculate the chemical equilibrium composition and adiabatic flame temperature, especially stressed on NO and CO concentration of Heavy oil. Twenty four components of combustion gases which would be produced from the combustion of Heavy oil were chosen and utilized for the products composition analysis of competing combustion reaction. As the results, following conclusions were turned out; (1) Maximum adiabatic flame temperature was found around to be 2900K, when the stoichiometric air ratio was 0.8. (2) Maximum NO quantity in adiabatic process was occurred when supplied air quantity was around 120% of theoretical air requirement. (3) NO and CO quantities were increased with combustion gas temperature at constant stoichiometric air ratio. (4) At constant temperature of combustion gas, NO quantity was increased and Co quantity was decreased with supplied air quantity.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling(II) (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (II))

  • Kim, Jung-Hun;Jeong, Hea-Seung;Park, Hee-Ho;Park, Kye-Seung;Kim, Yoo;Moon, Il-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • This paper describes the general design procedure of cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, the proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that combustion pressure and mixture ratio have an influence on the heat flux to be produced in combustion chamber.

  • PDF

A study on prediction of propellant distribution of single swirl coaxial injector in gas generator (가스발생기용 단일 스월 동축형 분사기의 추진제 분포 예측에 관한 기법 연구)

  • Kim Jong-Gyu;Kim In-Tae;Han Yeoung-Min;Seol Woo-Seok;Lee Kwang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.205-209
    • /
    • 2004
  • The configuration and arrangement of injector in LRE gas generator and combustor have a great impact on combustion process and heat exchange because of affecting atomization, vaporization, mixing and chemical reaction. A relation between injector array and mixing distribution of propellants based on a physical approach was investigated in this study. Programming method of this relation is used to predict mixing distribution of propellants. Simplicity of physical approach and various assumptions make it reduce the accuracy and application of the results of present study. But, this method is very useful to predict the mixing distribution of full scale combustor due to difficulties in cold flow testing.

  • PDF

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

Effect of the CO Tube insert for Emission Characteristics in a Compact Combustion Chamber (컴팩트 연소실 내 CO튜브 삽입에 따른 오염물질 배출특성)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Jang, Gi-Hyun;Lee, Chang-Eon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.66-71
    • /
    • 2010
  • This study was the effect of CO tube insert for NOx and CO emission characteristics in a compact combustion chamber. In detail, NOx and CO emission characteristics with changing of distance due to inserting the CO tube between the burner and the main heat exchanger were investigated. For this study, the commercial program, FLUENT, and the GRI 2.11 detail reaction mechanism were used for the numerical study and a simple model heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between the burner and the main heat exchanger, it was verified the simultaneous NOx and CO reduction method because of increasing the residence time and decreasing the flame temperature.

  • PDF

Linear Stability Analysis for Combustion Instability in Solid Propellant Rocket (고체추진 로켓의 선형 안정성 요소에 대한 연구)

  • Kim, Hakchul;Kim, Junseong;Moon, Heejang;Sung, Honggye;Lee, Hunki;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2013
  • Linear stability analysis for combustion instability within a cylindrical port of solid rocket motor has been conducted. The analysis of acoustic energy has been performed by a commercial COMSOL code to obtain the mode function associated to each acoustic mode prior to the calculation of stability alpha. An instability diagnosis based on the linear stability analysis of Culick is performed where special interests have been focused on 5 stability factors(alpha) such as pressure coupling, nozzle damping, particle damping and additionally, flow turning effect and viscous damping to take into account the flow and viscosity effect near the fuel surface. The instability decay characteristics depending on the particle size is also analyzed.

Development of Gas Turbine Engine Simulation Program Based on CFD (CFD 기반 가스터빈 엔진 모사 코드 개발)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 2009
  • Gas turbine engine simulation program has been developed. In compressor and turbine, 2-D NS implicit code is used with k-$\omega$ SST turbulent model. In combustor, 0-D lumped method chemical equilibrium code is adopted under the limitations, the products are only 10 species of molecular and air-fuel is perfectly mixed state with 100% combustion efficiency at constant pressure. Fluid properties are shared on interfaces between engine components. The outlet conditions of compressor have been used as the inlet condition of combustor. The inlet condition of turbine comes from the compressor The back pressure in compressor outlet is transferred by the inlet pressure of turbine. Unsteady phenomena at rotor-stator in compressor and turbine is covered by mixing-plane method. The state of engine can be determined only by given inlet condition of compressor, outlet condition of turbine, equivalence ratio and rotating speed.

Burn-back Analysis for Propellant Grains with Embedded Metal Wires (금속선이 삽입된 추진제 그레인의 Burn-back 해석)

  • Lee, Hyunseob;Oh, Jongyun;Yang, Heesung;Lee, Sunyoung;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Propellant grains with embedded metal wires have been used for enhancement of burning rate while maintaining high loading density. For the performance design of a solid rocket motor using propellant grain with embedded metal wires, burn-back analysis is required according to number, location, arrangement angle of metal wires, and augmentation ratio of the propellant burning rate near a wire region. In this study, a numerical method to quickly calculate a burning surface area was developed in response to the design change of the propellant grain with embedded metal wires. The burning surface area derived from the developed method was compared with the results of a CAD program. Error rate decreased as the radial size of the grid decreased. Analysis for characteristics of burning surface area was performed according to the number and location of metal wires, the initial and final phases were shortened and the steady-state phase was increased when the number of metal wires increased. When arranging the metal wires at different radii, the burning surface area rapidly increased in the initial phase and sharply decreased in the final phase compared to the case where the metal wires were disposed in the same radius.