• Title/Summary/Keyword: 연소특성치

Search Result 30, Processing Time 0.024 seconds

Prediction of Temperature Dependence of Explosion Limits and Interrelationship of Explosion Characteristics for Akylketones (알킬케톤류의 폭발 특성치 간의 상관관계 및 폭발한계의 온도의존성 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.7-13
    • /
    • 2006
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion characteristics. The explosion limit, the heat of combustion, flame temperature and temperature dependence of the lower explosive limit are the major combustion characteristics used to determine the fire and explosion hazards of the flammable substances. The aim of this study is to investigate interrelationship of explosion characteristics and the temperature dependence of the lower explosion limit at elevated temperature for akylketones. By using the reference data, the empirical equations which describe the interrelationships of explosion properties of akylketones have been derived. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosion limits of akylketones on the basis of the literature data are proposed. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable substances.

  • PDF

Measurement and Prediction of Combustuion Properties of di-n-Buthylamine (디노말부틸아민의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, combustion characteristics were measured by selecting di-n-buthylamine, which is widely used as an emulsifier, insecticide, additive, rubber vulcanization accelerator, corrosion inhibitor, and raw material for dye production. The flash point of the di-n-buthylamine was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the di-n-buthylamine was measured by ASTM 659E. The explosion limits of the di-n-buthylamine was calculated using the measured flash points by Setaflash tester. The flash point of the di-n-buthylamine by using Setaflash and Pensky-Martens closed-cup testers were experimented at 38 ℃ and 43 ℃, respectively. The flash points of the di-n-buthylamine by Tag and Cleveland open cup testers were experimented at 48 ℃. The AIT of the di-n-buthylamine was experimented at 247 ℃. The LEL and UEL calculated by using lower and upper flash points of Setaflash tester were calculated at 0.69 vol% and 7.7 vol%, respectively. The measurement of the flash point measurement and the calculation method of the explosion limit prediction presented in this study can be used to study the fire and explosion characteristics of the other combustible liquids.

Ethylene 공정 안전을 위한 Ethylene Gas의 안전특성치 고찰

  • 하동명;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.170-175
    • /
    • 2003
  • 화학과 석유화학 산업의 많은 공정에서는 가연성가스가 공정 가스로 사용되거나 발생될 수도 있다. 최근 석유화학단지에서 화재 및 폭발이 빈번하게 발생되고 있으므로 이에 대한 재해를 예방하기 위해서는 공정 조건에서의 이들 가연성가스의 연소특성을 알 필요가 있다. 연소특성들로는 폭발한계, 인화점, 최소자연발화점, 최소산소농도, 최소발화에너지, 연소열 등을 들 수 있다.(중략)

  • PDF

Prediction of Explosive Limits for Flammable Mixture Solution by Means of Solution Theory (용액론에 의한 가연성혼합용액의 폭발한계 예측)

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.69-72
    • /
    • 1999
  • 공정상에서 화재 및 폭발위험을 최소화하기 위해서는 공정의 안전과 최적화조작이 이루워 져야 하는데, 우선 작업 조건하에서 취급물질의 연소특성치 파악이 필요하다. 화학공정에 있어서 설계의 요지는 공정모사 프로그램이다. 최근에는 공정모사 프로그램에 응용하기 위해 열역학적 물성치 데이터베이스 연구에 화재ㆍ폭발 특성치 연구가 활발히 진행되고 있다. 이는 공장을 건설하기 전에 안전성 평가가 이루어져야 하기 때문이다. (중략)

  • PDF

Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent (배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정)

  • Yu-Ri Jang;Yu-Seon Jang;Jae-Jun Choi;Dong-Myeong Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.50-55
    • /
    • 2023
  • Lithium-ion secondary batteries are currently in high demand and supply. The purpose of this study is to secure the safety of the process by studying the combustion characteristics of EC(Ethylene Carbonate), Which is mainly used as an electrolyte organic solvent for lithium ion batteries. The flash points of the EC by using Setaflash and Pensky-Martens closed-cup testers were experimented at 141 ℃ and 143 ℃, respectively. The flash points of the EC by Tag and Cleveland open cup testers were experimented at 152 ℃ and 156 ℃, respectively. The AIT(Auto Ignition Temperature) of the EC was experimented at 420 ℃. The LEL(Lower Explosive Limit) calculated by using lower flash point of Setaflash was calculated at 3.6 Vol.%.

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.

The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet) (MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.190-194
    • /
    • 2017
  • The combustion properties for the prevention of the fire and explosion in the work place are flash point, explosion limit, autoignition temperature (AIT) etc.. The using of the corrective combustion properties of the MSDS (Material Safety Data Sheet) of the handling substance for the chemical process safety is very important. For the safe handling of benzyl alcohol which is widely used in the chemical industry, the flash point and the AIT were measured. And, the lower explosion limit (LEL) of benzyl alcohol was calculated by using the lower flash point which obtained in the experiment. The flash points of benzyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $90^{\circ}C$ and $93^{\circ}C$, respectively. The flash points of benzyl alcohol by using the Tag and Cleveland open cup testers are measured $97^{\circ}C$ and $100^{\circ}C$. The experimental AIT of benzyl alcohol by ASTM 659E tester was measured as $408^{\circ}C$. The LEL of benzyl alcohol measured by Setaflash closed-cup apparatus was calculated as 1.17 vol% at $90^{\circ}C$. In this study, it was to possible predict the LEL by using the lower flash point of benzyl alcohol which measured by Setaflash closed-cup tester.