• Title/Summary/Keyword: 연소압력

Search Result 1,146, Processing Time 0.027 seconds

Combustion Stability Characteristics in Sub-scale Gas Generator (축소형 가스발생기 연소안정성 특성)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.69-72
    • /
    • 2011
  • Hot-firing tests were performed on the third sub-scale gas generator for development of a 75 ton-class liquid rocket engine. This paper deals with the analysis results of low-frequency combustion instabilities that were encountered during combustion tests of the gas generator. The low-frequency pressure fluctuations seem to be related to chamber pressure and pressure drops through oxidizer/fuel injectors.

  • PDF

A Development of Test Equipment for Thermal Protection Performance on Insulator used in Solid Rocket Motor (고체로켓 추진기관용 연소관단열재의 내열성능평가를 위한 시험장치 개발)

  • Kang, Yoongoo;Yun, Deokjin;Kim, Suyoung;Lee, Jongsung;Kwon, Taeha
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.543-546
    • /
    • 2017
  • Test equipment was designed and manufactured to evaluate thermal reaction characteristic of internal insulators of solid rocket motor. Test is allowed up to chamber pressure 2,500 psi, burn-time 40 s. It is possible to observe and to compare thermal reaction characteristic for a few materials simultaneously, under the condition that the ablation occurs. In efficient average chamber pressure 878 psi, efficient burn-time 10.7 s and gas velocity 100 m/s, test was executed for confirming safety of equipment, being 4 test materials inserted simultaneously. Basic data for understanding thermal characteristic of internal insulator, that is, pressure-time curve, temperature-time curve in the test sample, and thermal destruction depth of test samples was gained successfully.

  • PDF

A study on the characteristic of fuel shutoff valve for 75 $ton_f$ combustion chamber (75톤 연소기용 연료개폐밸브의 특성에 대한 고찰)

  • Lee, Joong-Youp;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • Fuel shutoff valve of a combustion chamber controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been predicted flow coefficient of the valve by Fluent(ver. 12.0) CFD analysis. Various results from the prediction and the analysis have been compared with experiments.

Deflagration to detonation transition by interaction between flame and shock wave in gas mixture (가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.369-374
    • /
    • 2010
  • This paper presents a numerical investigation of the Deflagration to Detonation Transition (DDT) of flame acceleration by a shock wave in combustible gas mixture. A model consisting of the reactive compressible Navier-Stokes equations is used. The effects of viscosity, thermal conduction, species diffusion, and chemical reactions are included. Using this model, the generation of hot spots by repeated shock and flame interaction in front and back of flame and the change of detonation occurrence by various shock intensities (Ms=1.1, 1.2, 1.3) are studied. The simulations show that as the incident shock intensity increases, the Richtmyer-Meshkov (RM) instability becomes stronger and DDT occurrence time is reduced.

  • PDF

A Study on the Relationship of Explosion Characteristics and Combustion Heat of Gas Mixtures (가스 혼합물의 폭발압력과 연소열의 상관관계 연구)

  • Oh Khy-hyung;Kim Hong;Yoo Joo-hyun;Kim Tae-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. In this paper, we tried to find the relationship between explosion characteristics and combustion heat of the hydrocarbon-oxygen mixtures. Experiment were carried out with the volume of $5916cm^3$ cylindrical explosion vessel. Hydrocarbon gases which used in this study were methane, ethylene, propane, and buthane Experimental parameter was the concentration of the gas mixtures. Explosion characteristics were measured with strain type pressure transducer through the digital storage oscilloscope. From the experimental result, it was found that explosion pressure depend upon the combustion heat.

  • PDF

Analysis of Unsteady Combustion Performance in Solid Rocket Motor with Pintle (핀틀을 장착한 고체추진기관의 비정상 연소 성능 분석)

  • Ki, Taeseok;Ha, Dongsung;Jin, Jungkun;Lee, Hosung;Yoon, Hyungull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • In this paper, unsteady characteristics of pressure in solid rocket motor were analyzed by using response of pintle actuation, pressure and thrust data from ground test. Pressure and thrust in solid rocket motor can be controlled in real time by varying nozzle throat area with pintle, installed in the valve. Unsteady characteristics of pressure can be observed in this system occurred by various reasons. Two critical reasons, error of pintle actuation and ablation of center tube, are found and effects of each reason can be analyzed individually by re-prediction of pressure with response of pintle actuation and analyzing thrust to pressure ratio.

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

B-KNO$_3$ 점화제의 노화 현상 분석

  • 장승교;류병태
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.14-14
    • /
    • 1997
  • 추진제의 노화 못지 않게 점화제의 노화도 추진 기관 성능에 큰 영향을 미칠 것으로 예측된다. 따라서 10년 이상 경과된 활성 모터에서 점화기를 분해하여 노화에 의한 점화제의 성능 변화를 알아보았다. 분석에 사용한 점화제는 II-D Bi-Convex형상의 B-KNO$_3$ 펠렛으로 열량, 자동 점화온도, 기계적 물성의 변화를 관찰하였고, 밀폐 용기(Closed bomb)에서 연소시험을 통하여 노화에 따른 점화알약의 압력변화를 측정하고 이론 값과 비교하였다. 또한 비활성 모타를 이용한 연소시험으로 점화기의 점화지연시간, 최대 압력, 최대 압력 도달시간 등을 측정하고 이론식과 비교하여 노화에 의한 변화를 관찰하였다.

  • PDF

다목적실용위성 추진시스템의 추진제 소모율 분석

  • 김정수;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.8-8
    • /
    • 2000
  • 하이드라진 단기액체엔진을 장착하고 궤도에서 임무를 수행하고 있는 다목적실용 위성 추진시스템 궤도비행 초기운용 자료에 근거하여 추진제 소모율을 산정 한다. 추진시스템은 위성의 궤도각과 비행고도 조정을 위한 속도증분($\Delta$V) 및 자세제어를 위한 추력을 발생시킨다. 단기액체 추진시스템에서 추진제 소모량은 추력기 밸브의 개폐시간에 비례하고 추력 생성 효율은 추진제의 연소기 유입압력에 종속한다. 일정질량의 가압 기체 압력에 의해 연료를 공급하는 추진시스템에서 잔류 추진제 량의 감소는 연소기 유입압력의 감소를 유발하고 추진기관의 효율을 저하시키는 요인으로 작용하여 임무말기로 진행함에 따라 동일한 운동량 생성에 보다 많은 연료소모가 이루어진다.(중략)

  • PDF

Method of Test for Combustion Instability and Control at Model Combustor of Supersonic Engine (초음속 엔진 모델 연소기에서의 연소불안정 및 제어 시험 기법)

  • Choi, Ho-Jin;Hwang, Yong-Seok;Jin, You-In;Park, Ik-Soo;Yoon, Hyun-Gull;Kang, Sang-Hun;Lee, Yang-Ji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.111-115
    • /
    • 2009
  • The method of test for observing the combustion instability and controling the instability actively by using secondary injection of fuel through flame stabilizer was studied by constructing model combustor of supersonic engine. The frequency of combustion instability was detected by measuring the pressure of combustor using pressure sensor and by optical sensing of flame intensity. Electro-magnetic valve was adopted as actuator for active control and the characteristics of modulated fuel was studied by measured pressure of valve outlet and scattering signal of spray at secondary fuel injection.

  • PDF