• Title/Summary/Keyword: 연소시험

Search Result 1,281, Processing Time 0.029 seconds

비연소 혼합시험을 통한 이중스월 분사기의 연소성능 예측

  • Ryu, Eung-Hyun;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.7-7
    • /
    • 2000
  • 액체추진 로켓 분야에서 비연소 혼합시험(cold flow mixing test)은 로켓엔진의 성능을 예측하고 인젝터와 관련된 문제의 진단에 도움을 줄 수 있는 자료를 확보할 수 있는 수단이 된다. 비연소 혼합시험이 실제 연소시험을 대신할 수 있는 신뢰성 있는 자료를 제공할 수는 없지만, 인젝터의 최적형상을 설계하기 위해서 실시해야할 고 비용의 연소시험에 대한 횟수를 줄일 수 있는 보조시험으로서의 역할을 할 수 있다. 혼합시험 성능이 우수한 인젝터가 수력학적인 혼합성능을 능가하는 연소반응에 의해서 실제 연소시험에서는 성능이 저하되는 경우도 있을 수 있으나 대부분의 경우에는 비연소 혼합시험에서 좋은 성능을 나타내는 인젝터는 실제 연소시험에서도 좋은 성능을 나타낸다. 일반적으로 비연소시험과 연소시험 사이의 상관 관계를 정확히 정립하기 위해서는 많은 상관 관계 변수의 적용 및 충분한 혼합시험 자료가 요구된다.

  • PDF

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.

A Study of Combustion Test Facility for LRE Using Hydrogen peroxide and Kerosene as Propellant (과산화수소/케로신 액체로켓엔진의 연소시험 설비 개발에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Kim, Young-Mun;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.29-32
    • /
    • 2009
  • This study is for development combustion test facility of liquid rocket engine system using hydrogen peroxide/kerosene as propellent. For this new facility, we construct thrust measure system, propellent supply system, control and data acquisition system. To perform 200N liquid rocket engine combustion test, operation scenario and sequence were designed. Result of combustion test propellents were supplied to engine stably and confirm of development combustion test facility very well.

  • PDF

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2013
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

Design and Verification of a Injector-Head with Multiple Injectors Arranged in a Row (일렬형 다중 인젝터를 가진 분리형 헤드 제작 및 검증시험)

  • Yu, Isang;Choi, Jiseon;Shin, Donghae;Park, Jinsoo;Ko, Youngsung;Kim, Seonjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1016-1020
    • /
    • 2017
  • This study was conducted to develop a test facility that simulates the combustion instability that occurs in a real-scale liquid rocket combustor. A separate engine head with 3 injectors arranged in a row was designed/manufactured and verified through preliminary tests. The flow rate and spray pattern of the head were confirmed by the cold flow test. Next, propellant spray test and combustion test were carried out. A preliminary combustion test was carried out at 10 bar and the combustion chamber pressure was measured to be significantly lower than the target pressure. This is because it was a low pressure test, and it is expected to be resolved in the high pressure test in the future.

  • PDF

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

연소시험을 통한 우주발사체 추진기관 성능검증

  • 강선일;이정호;김영한;권오성;하성업;오승협
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.96-96
    • /
    • 2003
  • 우주발사체라 함은 지구상의 물체를 우주, 즉 지구의 중력이 영향을 미치지 못하는 대기권 밖으로 운반하는 수단을 말한다. 이를 위해 다양한 추진방식이 제안되었고 연구되고 있으나 현재까지 실용화 된 것은 화학연료를 연소시킴으로 인해 발생하는 추진력으로 지구 중력을 이겨내는 방식이다. 또한 발사체 구성에서 추진기관분야는 전체 성능을 좌우할 정도로 큰 비중을 차지하고 있다. 따라서 이에 대한 최적화 및 성능 검증은 필수적이다. 추진기관에 대한 성능 검증기법은 우주발사체 기술이 발달해 옴에 따라 해석적 방법, 비 연소 모사시험 등 다양하게 제시되고 있으나, 우주발사체용 추진기관의 연소현상을 예측 및 모사하는 것이 쉽지 않고 구축된 데이터가 적기 때문에 발사체 개발 단계의 최종 검증 차원에서 연소시험을 실시하는 것이 일반적이다. 한국 최초의 우주발사체라 평가되고 있는 KSR-III 로켓의 경우에도 다양한 해석기법과 모사시험을 통해서 성능 예측을 하였으나, 역시 최종 성능 검증을 위해 10여회의 연소시험을 실시하였다. 본 논문을 통해 저자는 KSR-III 개발과정에서 수행된 10회의 연소시험의 수행 과정과 결과를 기술, 정리 및 평가하여 향후 진행될 우주발사체 개발 사업의 기초로 삼고자 한다.

  • PDF

Experiments on Development A Pulse-Gun Pressure-Wave Inducing Device for Stability Rating Test Technique (연소안정성 평가시험 기법을 위한 펄스건 압력파 유도장치 개발 실험)

  • Lee, Kwang-Jin;Kim, Hong-Jip;Seo, Seong-Hyeon;Moon, Il-Yoon;Kim, Hyung-Mo;Lee, Soo-Yong;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2005
  • The SRT(stability rating test) technique, which is indispensable for the development of a LRE(liquid rocket engine), essentially requires a development of a combustion test sequence as well as artificial perturbation devices. For the development of an indigenous SRT technique, several combustion tests of sub-scale LRE were performed to search a proper combustion test sequence. At first, a pressure-wave inducing device which is used for adapting pulse gun was designed and a cooling gas supply system for the pressure-wave inducing device was set up to prevent a malfunction of pulse gun. Through the several combustion tests which included cooling procedure of a pressure-wave inducing device, a proper combustion test sequence was found out. It did not make any significant disturbance at normal combustion process. Finally, an indigenous SRT technique has been developed successfully.

Low Pressure Combustion Tests for Technology Demonstration Model of 75 tonf Thrust Chamber (75톤급 액체로켓엔진 연소기 저압연소시험)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.10-13
    • /
    • 2010
  • Low pressure combustion tests for TDM(Technology Demonstration Model) of 75 tonf thrust chamber were performed. It has design chamber pressure of 60 bar, propellant mass flow rate of 243.6 kg/s. Due to the limitation of the current firing test facility in Korea, the combustion tests were conducted to verify the operation and the combustion performance at low pressure condition (30 bar, 121.8 kg/s). All the tests had been successfully executed without the damage of the hardware. These test results can be used as fundamental data to predict the combustion performance at design point condition for 75 tonf thrust chamber.

  • PDF

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber (액체로켓엔진 연소기 연소안정성 평가시험)

  • Ahn, Kyubok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.