• Title/Summary/Keyword: 연소성

Search Result 2,181, Processing Time 0.035 seconds

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Exposure Assessment for Polycyclic Aromatic Hydrocarbons in the Model Menu System of Korean (한국인의 모델식이에 대한 다환방향족탄화수소류(PAHs)의 인체노출량평가)

  • Kim YunHee;Yoon EunKyung;Lee HyoMin;Park KyungAh;Jun EunAh;Lee CherlHo;Choi SangYun;Lim SeungTaek;Ze KeumRyun;Choi KwangSik
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.4
    • /
    • pp.176-184
    • /
    • 2004
  • This study was conducted to compare and estimate the daily PAHs dietary intake from both home-cooking and dining-out, through approach of model diet used in exposure assessment of food contaminants. Food commodities reflecting in model diet were selected from the KHIDI report and were analysed in cooked or uncooked edible forms using HPLC-Fluorscence Detector. The PAHs dietary intake comparison between home-cooking and dining-out was based on one meal intake suggested in model diet and PAHs dietary intake was estimated by using food consumption rate and body weight of the Korean adult group. The daily PAHs dietary intake was calculated by permutation and combination method with assumption that a person consumed 2 meals from home-cooking menu and 1 meal from dining-out menu. The total PAHs levels in 36 food commodities with 200 samples were ranged from 2.00 ug/kg to 141.28 ug/kg and a food showing the highest PAHs level was the stir-fried anchovy. The $TEQ_{BaP}$ levels of PAHs were calculated using benzo(a)pyrene equivalents individual congener level and corresponding TEF value and the $TEQ_{BaP}$ level were ranged from $0.03\;ugTEQ{BaP}$ to $1.31\;ugTEQ_{BaP}$ and a food showing the highest $TEQ_{BaP}$ level was the hamburger. The PAHs dietary intakes per one meal from home-cooking and dining-out were $2.4\times10^{-3}\;ugTEQ_{BaP}/kg/meal\;and\;4.0\times10^{-3}\;ugTEQ_{BaP}/kg/meal$, respectively. This data showed the PAHs dietary intake from dining-out was about 1.7 times higher than from the home-cooking. The daily PAHs dietary intakes of general Korean adult having two meals from home-cooking and one meal from dining-out per a day were ranged between $8.0\times10^{-3}\~9.7\times10^{-3}\;ugTEQ_{BaP}/gg/day$ and mean value as $8.9\times10^{-3}\~9.7\times10^{-3}\;ugTEQ_{BaP}/gg/day$.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Slipped Capital Femoral Epiphysis(SCFE) (대퇴골두 골단분리증의 치험례)

  • Dan, Jin-Myoung;Kim, Se-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.245-261
    • /
    • 1997
  • Slipped capital femoral epiphysis(SCFE) is a disorder in which there is a gradual or acute disruption through the capital physeal plate. The physiolysis is through a widened zone of hypertrophy, which is weakened due to altered chondrocytic maturation and endochondral ossification. The cause or causes of SCFE remain uncertain. The association of obesity and adolescent age with growth rate are predisposing factors. The possibility that most patients with subclinical hormonal abnormality were proved. The goal of treatment of slipped capital femoral epiphysis is to restore the function of the hip and delay the development of degenerative osteoarthrosis by prevention of additional displacement of the epiphysis. We report 10 patients(12hips) with SCFE who were treated by surgical means and followed along for more than one year, at Yeungnam University Hospital, from 1989 to 1996. There were six boys and four girls. The average age at operation was 11.8 years. Seven cases occurred in the left hip, one case in the right and 2 cases had bilateral involvement, five cases had a history of minor trauma on affected hip. Among hormonally studied six patients, panhypopituitarism patient was one case; decreased testosterone, two; decreased growth hormone, two; and decreased thyroid hormone, one. According to clinical stage, two cases were the acute type; five cases, acute on chronic type; and three cases, chronic type. On the radiological grades of slipping, mild slippage were nine hips; moderate, one; and severe, two. The eleven hips were treated by pin fixation in situ, and one, by cuneiform osteotomy. On the average follow-up of 2.6 years, ten hips were excellent or good functional results, two hips were failure.

  • PDF

Effect of SO2 on NOx Removal Performance in Low Temperature Region over V2O5-Sb2O3/TiO2 SCR Catalyst Washcoated on the Metal Foam (저온영역에서 메탈폼에 코팅된 V2O5-Sb2O3/TiO2 SCR 촉매의 NOx 저감성능에 미치는 SO2 영향에 관한 연구)

  • Na, Woo-Jin;Park, Young-Jin;Bang, Hyun-Seok;Bang, Jong-Seong;Park, Hea-Kyung
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • The emission of SO2 is inevitable in case of combustion of most fossil fuels except LNG in commercial power plant which has a bad effect on the durability of SCR catalyst. To develop a low temperature SCR catalyst which has a high NOx removal performance and excellent durability to SO2, V2O5/TiO2 catalysts were prepared by coating on the metal foam substrate with the impregnation amount of Sb2O3 as promotor. This study has evaluated the NOx removal performance and the durability to SO2 on a laboratory scale atmospheric reactor and analyzed the properties of the prepared catalysts by means of porosimeter, BET, SEM (scanning electron microscope), EDX (energy dispersive x-ray spectrometer), XPS (X-ray photoelectron spectroscopy). It was found that the surface area of catalyst increased with the impregnation amount of Sb2O3 and the NOx removal performance showed the highest value at the 2 wt% impregnation of Sb2O3. This results was considered to be due to the optimum active site on the catalyst surface. And also, Sb2O3 impregnated catalysts presented that NOx removal performance was maintained despite the exposure to SO2 for 5 hours. Therefore it was confirmed that metal foam SCR catalyst for low temperature could be manufactured with the optimum control of Sb2O3 impregnation according to the SO2 presence or not.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/metal foam Catalysts (Ru/Al2O3/메탈폼 촉매를 이용한 친환경 액체추진제 분해)

  • Yoo, Dalsan;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2019
  • Hydroxylammonium nitrate (HAN)-based liquid propellants are attracting attention as environmentally friendly propellants because they are not carcinogens and the combustion gases have little toxicity. The catalyst used to decompose the HAN-based liquid propellant in a thruster must have both low temperature activity and high heat resistance. The objective of this study is to prepare an Ru/alumina/metal foam catalyst by supporting alumina slurry on the surface of NiCrAl metal foam using a washing coating method and then to support a ruthenium precursor thereon. The decomposition activity of a HAN aqueous solution of the Ru/alumina/metal foam catalyst was evaluated. The effect of the number of repetitive coatings of alumina slurry on the physical properties of the alumina/metal foam was analyzed. As the number of alumina wash coatings increased, mesopores with a diameter of about 7 nm were well-developed, thereby increasing the surface area and pore volume. It was optimal to repeat the wash coating alumina on the metal foam 12 times to maximize the surface area and pore volume of the alumina/metal foam. Mesopores were also well developed on the surface of the Ru/alumina/metal foam catalyst. It was found that the metal form itself without the active metal and alumina can promote the decomposition reaction of the HAN aqueous solution. In the case of the Ru/alumina/metal foam-550 catalyst, the decomposition onset temperature was significantly lowered compared with that of the thermal decomposition reaction, and ${\Delta}P$ could be greatly increased in the decomposition of the HAN aqueous solution. However, when the catalyst was calcined at $1,200^{\circ}C$, the catalytic activity was lowered inevitably because the surface area and pore volume of the catalyst were drastically reduced and Ru was sintered. Further research is needed to improve the heat resistance of Ru/alumina/metal foam catalysts.

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses (느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.73-82
    • /
    • 2023
  • This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.