• Title/Summary/Keyword: 연소반응기구

Search Result 44, Processing Time 0.018 seconds

Flame Structure of Moderately Turbulent Combustion in the Opposed Impinging Jet Combustor (대향분출화염의 분산화학반응 화염구조와 NOx 저감기구)

  • 손민호;조용진;윤영빈;이창진
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1387-1393
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion. As a result, it was found that the highly strained pockets are widely distributed during the combustion in the middle of chamber when the orifice diameter is 5mm. And the corresponding PDF distribution of strain rates she was the smoothly distributed strain .ate within the range of |$\pm$1000| (1/sec) rather than a spike shape about zero point. This is the unique feature observed in the combustion with 5mm orifice diameter. Therefore, it can be concluded that the substantial NOx reduction in opposed impinging combustor is mainly attributed to the strain rate distribution within the range of |$\pm$1000|resulting in the combustion phase shift to moderate turbulent combustion.

Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames (에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향)

  • Jun-Soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • The risk of climate change has been long acknowledged, and ongoing efforts to overcome this issue, within the shipping sector, with the international maritime organization playing a central role. Conducting research on characteristics of soot formation is crucial to control its occurrence within the combustion process. In this study, the laser extinction method and chemical reaction numerical analysis were employed to examine the alterations in the state of chemical species associated with flame temperature, flame visual, and soot formation by mixing nitrogen, an inert gas, in the counterflow diffusion flame based on ethylene gas. The findings of the study suggest that as the mixing ratio of nitrogen increased, both the flame temperature and soot volume fraction decreased. Additionally, the area in which soot particles were distributed also decreased, and the volume fraction decrease rate declined when the mixing ratio increased by more than 30%. The mole fraction of the chemical species involved in soot growth also decreased. the chemical species associated with the HACA reaction were affected by variations in the hydrocarbon fuel ratio, and the chemical species related to the odd carbon path were confirmed to be affected by the flame temperature as well as the hydrocarbon fuel ratio.

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

An experimental study of particle deposition from high temperature gas-particle flows (고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구)

  • 김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.501-508
    • /
    • 1987
  • Experimental studies of particle (TiO$\_$2/) deposition from the laminar hot gas particle flow (about 1565K) onto the cold wall surface (about 1215K-1530K) were carried out by the 'real time' laser light reflectivity method (LLRM) and the photographs of scanning electron microscope(SEM). The LLRM was used for the measurement of thermophoretic deposition rates of small particles (d$\_$p/<3.mu.m), and the photographs of SEM were used for determining what factors control the collection of particles having diameters ranging from 0.2 to 30 microns. Two phenomena are primarily responsible for transport of the particles across the laminar boundary layers and deposition: (1) particle thermophoresis (i.e. particles migration down a temperature gradient), and (2) particle inertial impaction, the former effect being especially larger factor of the particle deposition in its size over the range of 0.2 to 1 microns. And also, this study indicates that thermophoresis can be important for particles as large as 15 microns. Beyond d$\_$p/=16.mu.m, this effect diminishes and the inertial impaction is taken into account as a dominant mechanism of particle deposition. The results of present experiments found to be in close agreement with existing theories.