• Title/Summary/Keyword: 연성 설계

Search Result 755, Processing Time 0.023 seconds

Ductility Demand of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 연성도 해석)

  • 홍성걸;김영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1999
  • This study presents a simplifled calculation method for required ductility of coupling beams in precast coupled shear walls at preliminary seismic design stages. Deflection of precast coupled shear walls based on a continuum approach is combined with inelastic gap opening of horizontal connection of panels to provide a relationship between the system-level ductility and the element-level ductility in a precast coupled shear wall. The equation proposed herein for ductility requirement for coupling beams shows that higher stiffness and lower strength of coupling beams result in high ductility reuqirement. The equation also shows that the ductility requirement is proportional to the degree of gap opening of the story in question. However, the coupling beam ductility in higher stories are not affected by gap openings of horizontal connections of panel.

  • PDF

Direct Inelastic Design for Steel Structures (강구조를 위한 직접비탄성설계법)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.181-190
    • /
    • 2004
  • A new inelastic design method performing iterative calculations using secant stiffness was developed. Since the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the members by performing iterative calculation. In the present study, the procedure of the proposed design method was established. Design examples using the proposed method were presented, and its advantages were highlighted by comparisons with existing design methods using elastic or plastic analysis. Unlike the existing inelastic design methods performing the preliminary design on the structure and checking its validity using nonlinear analysis, the proposed integrated analysis-design method can directly calculate the strength and ductility demands of each member. In addition, the proposed design method can address the inelastic design strategy intended by the engineer, such as strength and ductility limits of members and the design concept of strong-column and weak-beam. As a result, economical and safe design can be achieved.

Displacement Ductility Ratio of Reinforced Concrete Bridge Piers with Lap-splices (주철근 겹침이음 비율에 따른 RC교각의 연성능력 평가)

  • Park, Kwang-Soon;Ju, Hyeong-Seok;Shin, Hyun-Mock;Kim, Moon-Kyum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.1-12
    • /
    • 2008
  • As internal and external seismic experiment results, the seismic performance of RC bridge piers is largely dependent on the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions, and confining effects of transverse reinforcements. Capacity and displacement ductility of non-seismically designed existing RC piers are reduced by lap splices in plastic hinge regions. The provision for the lap splice of longitudinal reinforcing bars was not specified in KBDS (Korean Bridge Design Specifications) before the implementation of 1992 seismic design code, but the ratio of lap-spliced bars to all longitudinal reinforcing bars in plastic hinge regions is restricted to 50% in the 2005 version of KBDS. This paper presents a seismic assessment of RC piers at lap-splicing ratios of 0%, 50%, and 100%. Through a comparison of experimental and analytic results of RC piers, we introduce an appropriate ultimate strain of confined concrete in plastic hinge regions with lap-splices, and propose a method for estimating displacement ductility ratios of non-seismically designed existing RC piers using fiber element analysis.

Ductility Relationship of RC Bridge Columns under Seismic Loading (지진하중을 받는 철근콘크리트 교각의 연성도 상관관계)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.51-61
    • /
    • 2003
  • This research is a park of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. The objectives of this paper are to investigate the relationship between curvature ductility and displacement ductility and to propose a correlation equation for designing of reinforced concrete bridge columns under axial load and cyclic lateral load. Computer program NARCC was used for parametric study, which was proved to provide good and conservative analytical result especially for deformation capacity and ductility factor compared with test result. A total of 7,200 spirally reinforced concrete columns were selected considering the main variables such as section diameter, aspect ratio, concrete strength, yielding strength of longitudinal and confinement steel, longitudinal steel ratio, axial load ratio, and confinement steel ratio. A new equation between curvature ductility factor displacement ductility factor with the aspect ratio was proposed by investigation of 21,600 data produced from the selected column models by applying 3 different definitions of yield displacement.

Design of Mat Foundation by Simplified Flexible Method Using Regression Analysis (회귀분석을 이용한 단순화된 연성법에 의한 전면기초의 설계)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.153-164
    • /
    • 2015
  • The methods of design of mat foundation may be classified as the rigid method and the flexible method according to the assumptions used. In the rigid method, the mat is assumed to be infinitely rigid and the contact pressure is assumed planar distribution. However, the contact pressure is not planar but curved surface because the real mat is not rigid. Therefore, it is not precise to analyze the mat foundation using the rigid method, and so there is no choice but to accept an error. On the other hand, in the flexible method, the mat is considered as the plate on the elastic foundation. This elastic plate theory is for the infinite plate acting a concentrated load on the elastic foundation. However, the functions for the moment, shear, and the deflection by the flexible method are very complex, there are many difficulties for the designer to use them. Also, it is impossible to use the design aid figures as a substitute of the complex functions, because they do not cover the values at the critical sections for the moment and shear. Therefore, in this research, the simplified functions for the moment, shear, and the deflection are proposed by regression analysis for an designer to use easily the flexible method. The simplified functions are very accurate and very ease to use.

Direct Inelastic Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접비탄성내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer. such as ductility limit on each member, the design concept of strong column - weak beam, and etc. In addition, through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy. As the result. economical and safe design can be achieved.

Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements (횡방향철근이 감소된 중공사각단면 교각의 내진거동 특성)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.51-65
    • /
    • 2009
  • The seismic design concept of RC bridges is to attain the proper ductility of piers, yielding a ductile failure mechanism. Therefore, seismic design force for moment is determined by introducing a response modification factor (R), and lateral reinforcements to confine core concrete are specified in the current design code. However, these design provisions have irrationality, which results in excessive amounts of lateral reinforcements for columns in Korea, which are generally designed with large sections. To improve on these provisions, a new design method based on seismic performance has been proposed. To apply this to hollow sectional columns, however, further investigations and improvements must be performed, due to the different seismic behaviors and confinement effects. In this study, hollow sectional columns with different lap-splice of longitudinal bars and lateral reinforcements have been tested. Seismic characteristics and performance were investigated quantitatively. These research results can be used to derive a performance-based design for hollow sectional columns.

Seismic Design of Low-rise Steel Moment Frames in Korea (국내 저층 철골 모멘트골조의 내진설계)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The connection type of steel moment frames in the country is mostly fabricated in factories so that it is fairly ductile due to good quality control. Based on references, the domestic connection satisfies the performance limit for steel intermediate moment frames specified by the AISC. However, the current KBC2009 building code specifies various systems for steel moment frames such as ordinary, intermediate, and special moment frames while the former KBC2005 only did so for a ductile moment frame. This induces the necessity of investigating which system is appropriate in the country when the domestic connection is applied. Therefore, this study was aimed at finding a proper design method by comparing the ductile moment frame in KBC2005 and the intermediate moment frames in KBC2009. The results showed that seismic design parameters for the ductile moment frames can be reasonable for satisfying the performance objective.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Response Modification Factors and No Collapse Design of Typical Bridges (응답수정계수와 일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2017
  • The purpose of earthquake resistant design for typical bridges is the 'No Collapse Design' allowing emergency vehicles just after earthquakes. The Roadway Bridge Design Code provides design provisions to carry out such 'No Collapse Design' with a ductile mechanism and response modification factors given for connections and substructure play key role in this procedure. In case of response modification factors for substructure, the Roadway Bridge Design Code provides values considering ductility and redundancy. On the other hand, 'AASHTO LRFD Bridge Design Specifications' provides values considering additionally an artificial factor according to the bridge importance categories divided into critical, essential and others. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and different response modification factors for substructure are applied with design conditions given in the Roadway Bridge Design Code. Based on the comparison study of the design results, supplementary measures are suggested required by applying different response modification factors for substructure.