• Title/Summary/Keyword: 연성효과

Search Result 600, Processing Time 0.023 seconds

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

Influencing Factors on Numerical Simulation of Crash between RC Slab and Soft Projectile (RC슬래브와 연성충격체의 충돌시뮬레이션 영향인자 분석)

  • Chung, Chul-Hun;Lee, Jung-Whee;Kim, Sang-Yun;Lee, Jae-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.591-599
    • /
    • 2011
  • This study investigates influencing factors on numerical crash simulation between RC slab and soft projectile using explicit dynamic method. Considered experimental test is the MEPPEN II/4 test, which has been conducted at the end of the years 70' in Germany as one of the numerous experimental test related to design of nuclear power plants. LS-DYNA software is adopted for numerical study, and influencing factors such as constitutive model of concrete, strain rate effect of steel and concrete, support modeling method, etc. are investigated. More reasonable simulation results can be achieved through appropriate consideration of these factors, especially of constitutive model of concrete material since this factor affects most among the investigated factors.

Chloride Penetration Resistance and Flexural Behavior of Hybrid Organic Fibers Reinforced Concrete (유기계 섬유로 하이브리드 보강된 콘크리트의 휨 거동 및 염분침투저항성)

  • Kim, Seung Hyun;Kang, Min Bum;Lee, Dong Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.105-115
    • /
    • 2015
  • In this study, to understand mechanical characteristic of hybrid reinforced concrete by PVA-fiber 6 mm and PP-fiber 50 mm, which are organic fiber replaced macro-fiber with PP-fiber, four mixed Hybrid Organic Fibers Reinforced Concrete (HFRC) is compared with one mixed plain concrete without fiber reinforcement. Volume portion of the fibers are limited under one percent. The result presents that hybrid reinforcement of the organic fibers cannot maximize stiffness and ductility behavior of the steel fiber reinforcement. however, in comparison to plain concrete, it is confirmed that meaningful relation between toughness index and equivalent flexural strength with advanced ductility behavior. Also, in the case of concrete hybrid reinforced by organic fiber, when the volume portion of the fiber increases, ductility also increases. PP-fiber, which is macro fiber, has more effect on the flexural behavior of concrete than PVA-fiber, which is micro fiber, does. The result also shows that it decrease chloride penetration in chloride penetration test.

Constitutive Model of Laterally Confined High Strength Concrete (횡구속된 고강도 콘크리트의 구성모델)

  • Yun, Sung-Hwan;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 2010
  • Since existing constitutive models developed for confined normal strength concrete overestimate ductility when they are applied to confined high strength concrete, these models cannot be directly applied to confined high strength concrete. In an effort to solve this problem, an accurate stress-strain relationship of the hihg strength concrete needs to be formulated by examining the confinement effects due to increase of the concrete strength. In this study, a constitutive model is developed to express the stress-strain relationship of confined high strength concrete by carrying out regression analysis of the main parameters affection strength and ductile behavior of reinforced high strength concrete columns. Twenty-five test specimens were chosen from the reported experimental studies in the literature. The experimental results of stress-strain relationships of show a good agreement with results of the stress-strain relationships of suggested high strength concrete, covering a strength range between 60 and 124 MPa.

Failure Mode and Design Guideline for Reinforced Concrete Slab Strengthened Using Carbon FRP Grid (Carbon FRP Grid로 휨 보강한 철근콘크리트 슬래브의 파괴형태와 설계기준)

  • Park Sang-Yeol;Xian Cui
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.667-675
    • /
    • 2004
  • This paper presents the failure mode and strengthening design of reinforced concrete slab strengthened with Carbon Fiber Reinforced Polymer(CFRP) grid. Parameters involved in this experimental study are FRP grid reinforcement quantity, repair mortar thickness, the presence of anchor, and strengthening in compression. In this study, there are different failure types with increasing the CFRP grid strengthening reinforcement. On the low strengthening level, CFRP grid in repair mortar cover ruptures. On the moderate strengthening level, there is a debonding shear failure in the interface of carbon FRP grid because of the excessive shear deformation. On the high strengthening level, diagonal shear failure occurs. With the increasing of FRP grid reinforcement, the strengthening effect increased, but the ductility decreased. By limiting the strengthening level, it can be achieved to prevent shear failure which result in sudden loss in the resisting load capacity. CFRP rupture failure is desirable, because CFRP ruptured concrete slab keeps the same load capacity and ductility haying before strengthening even after failure. Finally, design guideline and procedure are given for strengthening of concrete slab with CFRP grid.

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Behavior of Underground Flexible Pipe According to Ground Characteristics (지반특성에 따른 지중 연성관의 거동특성)

  • Chang, Yongchai;Kim, Yonghyu;Lee, Seungeun;Park, Kichul;No, Jinsuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.41-48
    • /
    • 2009
  • A flexible pipe was buried 10cm below the ground formed with standard sand to observe changes in the shape of the pipe according to the behavior of ground at each relative density. Changes in the shape of the pipe in each ground were observed to examine the behavior of the pipe under the state of reinforced ground after installing geogrid under the pipe. Ground reinforced using geogrid formed tensile force on the reinforcement material with increase in the vertical load and showed reduction in settlement under identical vertical load with existence of reinforcement. Distributions of ground deformation of 100% relative density and 70% relative density had clear difference. Reinforced ground with 70% density converged to the ground reaction of final settlement of non-reinforced ground with 100% density at final settlement of 100 mm. Because the shape of lower part strain of the buried pipe is similar to that of un-reinforced ground with relative density of 100%, reinforcement effect by geogrid in soft ground can be anticipated.

  • PDF

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.

Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels (0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, O-Yeon;Ryu, Seong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • This research was examined the effect of intercritical heat treatment on the mechanical Properties and retained austenite formation in 0.1C-6.5Mn steels for the development of a high strength high ductility steel. using of transformation induced plasticity due to retained austenite. The stability of retained austenite is very important for the good ductility and it depend on diffusion of carbon and manganese during reverse transformation. It is effective to heat treat at$ 645^{\circ}C$ in order to obtain over 30 vol.% of retained austenite. However, it is more desirable to heat treat at $620^{\circ}C$, considering the volume fraction and mechanical stability of retained austenite. The strength-elongation combination in cold rolled steel sheets after reverse transformed at $620^{\circ}C$ for 1hr was about 4000k9/mm7, but it decreased rapidly with increasing holding time at high temperature due to the decrease of ductility. The addition of 1.1%Si in 0.14C-6.5Mn TRIP steel does not improve the mechanical properties and retained austenite formation.

  • PDF