• Title/Summary/Keyword: 연성파괴기준

Search Result 113, Processing Time 0.031 seconds

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Fiber-Steel Composite Plates (섬유-강판 복합플레이트로 보강된 RC 보의 휨 거동에 관한 연구)

  • Cho, Baik-Soon;Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.483-491
    • /
    • 2008
  • The effectiveness of a new fiber-steel composite plate designed specifically to be used for strengthening of reinforced concrete members has been investigated. Twelve reinforced concrete beams were tested. Seven of the beams were strengthened with carbon fiber-steel composite plate(CSP), four of the beams were strengthened with glass fiber-steel composite plate(GSP), and one beam was used as a control specimen. The experimental results showed that new strengthening system controls the premature debonding and provides a more ductile failure mode than other conventional strengthening systems. The observed ductility ratios were $3.01\sim3.81$ and $3.55\sim4.95$ for strengthened beam with CSP and GSP, respectively. The maximum load was increased by 115% and 107% for strengthened beam with CSP and GSP, respectively, comparing with control beam. In addition, experimental and analytical results were well agreed.

A Study on the Flexural Performance of Steel Fiber-Reinforced Beams lightly Reinforced Below the Minimum Steel Reinforcement (최소철근량 이하로 보강된 강섬유보강 보의 휨성능 고찰)

  • Kang, Duk-Man;Park, Yong-Gul;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.35-44
    • /
    • 2017
  • In this study, steel fiber-reinforced concrete beams with ordinary steel reinforcements, that are below minimum steel reinforcement amount specified in domestic concrete structure design code, were tested in flexure until failure. Steel reinforcement ratio considered were 44%, 66%, 78% and 100% of the minimum steel reinforcement. Considered steel fiber volume fractions were 0.25%, 0.50%, 0.75% and 1.00%. In results, it is confirmed that steel fibers greatly improve crack performance. Also, the steel fibers contributed to increment in yield load not in ultimate load. But the increment was not greater than the reduction by steel reinforcement reduction. The use of steel fibers in RC beams lightly reinforced below the minimum reinforcement ratio specified design code reduced ductility greatly. Consequently, steel reinforcement ratio in steel fiber-reinforced beams lightly reinforced below the minimum steel reinforcement should be increased in order to enhance proper ductility.

Mechanical Model for Failure of Compressed Concrete in Reinforced Concrete Beams (철근 콘크리트 보에서 압축력을 받는 콘크리트의 파괴에 대한 역학적 모델)

  • 한국콘크리트학회
    • Magazine of the Korea Concrete Institute
    • /
    • v.16 no.4 s.81
    • /
    • pp.70-77
    • /
    • 2004
  • 콘크리트 구조물에 대한 많은 기준들의 요건에 따르면, 휨을 받는 철큰 콘크리트(RC) 보의 압축부에서의 응력은 일반적으로 일축의 응력-변형을 관계를 이용하여 계산한다. 이와 같은 접근은 가끔씩 압축력을 받는 콘크리트에서 부서짐이 발성할 때 보의 구조적 거동을 재현하지 못할 수 있다. 결과적으로, RC 구조물의 지지력과 그들의 연성은 근사적으로 평가된다. 본 논문에서는 압축을 받고 있는 콘크리트의 postpeak 거동은 활동면을 이용하여 모델링되었다. 이 활동 면의 모멘트-곡률곡선에서 연화부분에 그 원인이 있다. 제안된 활동현상의 수학적 표현은 압축력을 받는 콘크리트(즉, 연화부분의 거동이 압축영역의 크기와 변형률구배(곡배)에 의존하는)에 있어서 특정한 응력-변형률 관계를 정의하는 것이 얼마나 어려운지를 보여주고 있다.

Seismic Performance of Reinforced Concrete Frame with Masonry Waist-high Wall using Aramid Fiber (아라미드 섬유를 이용한 철근콘크리트 프레임 면내 조적 허리벽의 내진보강성능)

  • Kim, Hye-Jin;Cho, Seung-Ho;Rho, Kwang-Geun;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.99-100
    • /
    • 2009
  • In this paper, wish to achieve an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using Aramid fiber strip.

  • PDF

Seismic Performance of Hollow Rectangular Precast Segmental Piers (프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능)

  • Lee, Jae-Hoon;Park, Dong-Kyu;Choi, Jin-Ho;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.705-714
    • /
    • 2012
  • Precast reinforced concrete bridge columns with hollow rectangular section were tested under cyclic lateral load with constant axial force to investigate its seismic performance. After all the precast column segments were erected, longitudinal reinforcement was inserted in the sheath prefabricated in the segments, which were then mortar grouted. Main variables of the test series were column aspect ratio, longitudinal reinforcement ratio, amount of lateral reinforcement, and location of segment joints. The aspect ratios were 4.5 and 2.5, and the longitudinal steel ratios were 1.15% and 3.07%. The amount of lateral reinforcement were 95%, 55%, 50%, and 27% of the minimum amount for full ductility design requirements in the Korean Bridge Design Code. The locations of segment joints in plastic hinge region were 0.5 and 1.0 times of the section depth from the bottom column end. The test results of cracking and failure mode, axial-flexural strength, lateral load-displacement relationship, and displacement ductility are presented. Then, safety of the ductility demand based seismic design in the Korean Bridge Design Code is discussed. The column specimens showed larger ductility than expected, because buckling of longitudinal reinforcing bar was prevented due to confinement developed not only by transverse steel but also by sheath and infilling mortar.

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

Flexure-Shear Behavior of Circular Bridge Columns under Cyclic Lateral Loads (반복 횡하중을 받는 원형교각의 휨-전단 거동)

  • Lee Jae-Hoon;Ko Seong-Hyun;Lee Dae-Hyoung;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.823-832
    • /
    • 2004
  • The purpose of this research is to investigate the flexure-shear behavior of bridge columns under seismic loads. Four full scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. The selected test variables are aspect ratio(1.825, 2.5, 4.0), transverse steel configuration, and longitudinal steel ratio. Volumetric ratio of transverse hoop of all the columns is 0.0023 in the plastic hinge region. It corresponds to $24\%$ of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. The columns showed flexural failure or flexure-shear failure depending on the test variables. Failure behavior and seismic performance are investigated and discussed in this paper.

Comparisons of Numerical Analyses considering the Effects of Shear Strength Degradation For Nonseismic Designed RC Frame (비내진 설계된 RC 골조에 대한 전단강도 감소 효과를 고려한 수치해석의 비교)

  • Lee, Young-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.1-8
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which Include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). As results, It is shown that Moehle's shear strength degradation model estimates the shear strength lower than NZSEE model and has less variation than ATC 40 model and all the shear strengths of models are greater than the nominal shear strength of ACI 318. Also, from the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring model for shear degradation.