• Title/Summary/Keyword: 연성층

Search Result 215, Processing Time 0.022 seconds

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • Kim, Chang Sung;Ma, Sang Soo;Choi, Se Hyu;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.339-348
    • /
    • 2002
  • The study developed an automatic design method of steel frames which uses nonlinear analysis. The geometric nonlinearity was considered using stability functions. Likewise, the transverse shear deformation effect in a beam-column was explained. A direct search method was used as an automatic design technique. The unit value of each part was evaluated using LRFD interaction equation. The member with the largest unit value was replaced one by one with an adjacent larger member selected from the database. The weight of the steel frame was considered as an objective function. On the other hand, load-carrying capacities, deflections, inter-story drifts, and ductility requirement were used as constraint functions. Case studies of a two-dimensional and a three-dimensional two-story frames were presented.

A Basic Research for Ductile Hybrid Fiber Composite Panels of Materials (유사연성 하이브리드 섬유를 이용한 복합패널의 구성 재료 기초 연구)

  • Kim, Woonhak;Kang, Seokwon;Hwang, Seongwoon
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.388-395
    • /
    • 2014
  • In this paper, usability and use force on the structure and does not have a big impact on the development of existing materials developed using materials to their full impact/blast resistant Complex configuration on the panel that can be implemented. Each material of the characteristics so that they can exert in layers of layer formed panels in layers. Structure of the general structure is to keep strength and endurance, maintenance and minimize the damage can be utilized for knee brace to do basic research, for creating the panel.

Seismic Capacity Evaluation of Existing Structures Incorporating Damage Assessment (구조손상을 고려한 기설구조물의 내진성능평가)

  • Song, Jong Keol;Yi, Jin Hak;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.543-553
    • /
    • 2004
  • This paper covered two related subjects: the use of the inverse modal perturbation technique to assess structural damage in existing structures; and the use of a seismic capacity evaluation to assess damaged structures, with the aid of the identified structural damage. The substructural identification and the Tikhonov regularization algorithm were incorporated for efficient damage assessment of complex and large frame structures. The seismic capacity of a damaged structure was evaluated by comparing the structure's seismic responses and seismic damage indices. The effectiveness of the proposed method has been investigated through the numerical simulation study for a twenty-story frame structure with undamaged and damaged cases, and also different earthquake excitations.

Performance evaluation for lithium-ion battery of the Cu-Sn alloy deposition (구리-주석 합금 도금층의 리튬이온 배터리 성능 평가)

  • Jeong, Min-Gyeong;Jang, Si-Seong;Kim, Dong-Hyeon;Bok, Gyeong-Sun;Lee, Seong-Jun;Lee, Gi-Baek;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.192.2-192.2
    • /
    • 2016
  • 최근 차세대 휴대용 전자기기나 전기자동차의 상용화 연구가 활발히 이루어짐에 따라 리튬이온 배터리가 주력 에너지 저장장치로써 활발히 개발되고 있다. 이러한 리튬이온 배터리의 음극 물질로써 주로 탄소재료가 많이 사용되어 왔지만 낮은 이론용량 (372 mAh/g)으로 인하여 좀더 높은 용량을 가지는 금속이나 합금 등이 주목을 받게 되었다. 그 중에서도 주석이 탄소재료에 비해 3배 정도 높은 이론 용량 (993 mAh/g)을 가지고 있어 많은 연구가 진행되고 있다. 하지만 주석의 경우 리튬이온 배터리의 충방전 과정 중에 급격한 부피 변화가 발생하여 음극이 손상되고 이에 따라 용량이 급격하게 감소하는 한계점이 있다. 이 한계를 극복하기 위한 많은 방법들 중 하나가 구리-주석 합금을 음극으로 사용하는 것이다. 구리는 비활성 금속으로 충방전 중의 부피 변화에 완충제 역할을 하고, 연성과 전기전도성이 있어서 배터리의 전기화학적 성능 또한 향상시켜 준다. 이에 따라, 본 연구에서는 주석이 풍부한 구리-주석 합금 도금을 통하여 구조적으로 튼튼한 리튬이온 배터리의 음극을 만들었고 그 성능을 확인하기 위하여 반쪽전지 실험을 통하여 500회 충방전 동안의 싸이클 특성 및 효율을 확인하였고 순환전압전류 실험 또한 진행하였다.

  • PDF

Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height (층고절감을 위한 반슬림플로어 합성보의 휨성능 평가)

  • Lee, E.T.;Lee, Sang Hoon;Jang, Bo Ra
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.165-173
    • /
    • 2008
  • In order to promote the practicality of high-rise steel buildings, the development of structural system which have the better fire resistance, the changeable plan, and the quality control of construction with general composite beams is needed. In this research, new semi-slim floor which the defect of general slim floor was complemented was evaluated to investigate the concrete integration with slim-flor beam and the flexural performance. 5 simply supported semi-slim floor beam tests were performed with parameters; structural form of slab support beam, slab thickness, with or without web opening, and shear connection. Experimental results showed that all specimen s had good ductile behavior.

Effect of Plate-Shaped Structures on Wind Load Against Variation of Draft (해양 구조물의 흘수 변화에 따른 판형 구조물이 풍하중 추정에 미치는 영향)

  • Yeon, Seong Mo;Kwon, Chang Seop;Kim, Yoo-Chul;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • In this paper, wind load on a semi-submersible rig was investigated using Computational Fluid Dynamics (CFD). A maritime atmospheric boundary layer model for wind profile was implemented such that the wind profile shapes were retained throughout the computational domain. Wind load on the semi-submersible rig was calculated under the maritime atmospheric boundary layer and matched well with the results from wind tunnel test within a ±20% error. Overturning moments with variation of draft were investigated by decomposing into drag and lift components. It was observed that the contribution from lift to the overturning moments increased as the draft got higher. The majority of the lift components originated from deckbox which served as a lifting body due to the accelerated streamlines between waterline and the bottom of the deckbox.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

Interfacial Adhesion and Reliability between Epoxy Resin and Polyimide for Flexible Printed Circuit Board (연성인쇄회로기판의 에폭시수지와 폴리이미드 사이의 계면접착력 및 신뢰성 평가)

  • Kim, Jeong-Kyu;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • The effects of KOH pretreatment and annealing conditions on the interfacial adhesion and the reliability between epoxy resin and polyimide substrate in the flexible printed circuit board were quantitatively evaluated using $180^{\circ}$ peel test. The initial peel strength of the polyimide without the KOH treatment was 29.4 g/mm and decreased to 10.5 g/mm after 100hrs at $85^{\circ}C/85%$ R.H. temperature/humidity treatment. In case of the polyimide with annealing after KOH treatment, initial peel strength was 29.6 g/mm and then maintained around 27.5 g/mm after $85^{\circ}C/85%$ R.H. temperature/humidity treatment. Systematic X-ray photoelectron spectroscopy analysis results showed that the peel strength after optimum annealing after KOH treatment was maintained high not only due to effective recovery of the polyimide damage by the polyimide surface treatment process, but also effective removal of metallic ions and impurities during various wet process.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.