• Title/Summary/Keyword: 연비 효율

Search Result 134, Processing Time 0.025 seconds

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

Study on Vortex Apparatus for Efficiency Improvement of Combustion Chamber of Automobile (자동차 연소실 효율 향상을 위한 와류장치 연구)

  • Choi, Hae-Kyu;Kook, Jeong-Han;Yoo, Joong-Hak;Kim, Sei-Hwan;Kim, Key-Sun;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2945-2950
    • /
    • 2011
  • As the step to improve fuel efficiency, there is the system to build up the eddy of combustion chamber at the suction line in order to increase the combustion efficiency. The models installed with no vortex generation system or with various shapes of the system are examined by fluid analysis. Vortex generation system is installed prior to the suction of combustion chamber. The wing of this system winds itself around the suction air and generates the vortex. This study investigates the flow of suction air and the pressure distribution of suction stroke by using the eddy generation system.

Turbine Efficiency Analysis of Steady Flow in a Twin Scroll Turbocharger (트윈 스크롤 터보과급기에서 정상유동의 터빈 효율 분석)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.765-770
    • /
    • 2020
  • The turbochargers used widely in diesel and gasoline engines are effective devices to reduce fuel consumption and emissions. In this study, the isentropic turbine efficiency of the steady flow in a twin-scroll turbocharger for the passenger vehicle gasoline engine was analyzed. The cold gas test bench was designed and made. The pressure and temperature of the inlet and exit of the turbine were measured at 60,000, 70,000, 90,000, and 100,000rpm under the steady-state flow. The isentropic turbine efficiency was calculated. The efficiency was the range of 0.53 to 0.57. The BSR and expansion ratio were changed from 0.71 to 0.84 and from 1.24 to 1.72, respectively. The isentropic turbine efficiency decreased with increasing BSR and expansion ratio. The operation of only scroll A or B was compared with that of the twin-scroll turbine. The isentropic efficiency of using only scroll B was higher than those of only scroll A at 60,000rpm. The isentropic efficiency of using only scroll A was higher than those of only scroll B at 100,000rpm. Therefore, the twin-scroll turbine used in this study is operating effectively in the wide speed range.

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Improvement of charging efficiency of AGM lead acid battery through formation pattern research (Formation pattern 연구를 통한 AGM 연축전지의 충전 효율 향상)

  • Kim, Sung Joon;Son, Jeong Hun;Kim, Bong-Gu;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • In order to improve fuel economy and reduce CO2, HEV adopts ISG system as a standard. This ISG system increased the electric load that the battery had to bear, and the number of starting increased rapidly. AGM Lead Acid batteries have been developed and used, but the charging time is about three times longer as the electrolyte amount control during formation must be maintained at a higher level compared to conventional lead-acid batteries. In this study, we tried to shorten the charging time by increasing the charging efficiency through the optimization of the formation pattern. In order to optimize the Formation Pattern, 10 charging steps and 6 discharging steps were applied to 16 multi steps, and the charging current for each step was controlled, and the test was conducted under 4 conditions (21 hr, 24 hr, 27 hr, 30 hr). As a result of simultaneous application of multi-step and discharge step, it was verified that minimizing the current loss and eliminating the sudden polarization during charging contributes to the improvement of charging efficiency. As a result, it showed excellent results in reducing the charging time by about 30 % with improved charging efficiency compared to the previous one.

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

PM Reduction Characteristics of Gasoline Direct Injection Engines with Different Types of GPFs (GPF 종류에 따른 직접분사식 가솔린 엔진의 입자상 물질 저감특성)

  • Yi, Ui Hyung;Park, Cheolwoong;Lee, Sunyoup;Lim, Jong Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.351-358
    • /
    • 2015
  • In the recent times, the use of gasoline direct injection (GDI) engines has been regarded as a means of enhancing conformance to emission regulations and improving fuel efficiency. GDI engines have been widely adopted in the recent years for their better engine performance and fuel economy compared to those of conventional MPI gasoline engines. However, they present some disadvantages related to the mass and quantity of particulate matter generated during their use. This study investigated the nanoparticle characteristics of the particulate matter exhausted from a GDI engine vehicle installed with different types of gasoline particulate filters, after subjecting it to ultra-lean burn driving conditions. Three metal foam and metal fiber filters were used for each experimental condition. The number concentrations of particles were analyzed for understanding their behavior, and the reduction characteristics were obtained for each type of filter.

Cavitation damage characteristics in seawater of electroless nickel plated gray cast iron (무전해 니켈 도금된 회주철의 해수 내 캐비테이션-침식 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.142-142
    • /
    • 2016
  • 무전해 니켈 도금은 산업기계 부품, 자동차 부품, 항공 및 전자 통신 부품 등에 이르기까지 산업 전반에서 폭넓게 사용되고 있다. 이는 무전해 니켈 도금 층이 우수한 균일성, 내마멸성, 내식성 등을 지녀 관련 연구가 지속적으로 활발하게 진행되어 왔기 때문이다. 특히, 최근에 이르기까지 도금 층이 얇고, 우수한 내마멸성 및 낮은 마찰계수를 활용한 무전해 니켈 도금은 산업현장에서 기계 부품들의 수명을 연장시키고, 그 성능을 개선시키는데 용이하게 적용되고 있다. 본 연구에서는 이와 같이 무전해 니켈 도금 층의 우수한 특성을 활용하여 해수 부식과 캐비테이션-침식 복합 환경 하에 놓여 있는 금속 재료의 손상을 방지하고자 하였다. 이는 선박의 경우 최근 고속화, 대형화 추세에 따라 부품의 내구성 향상과 연비 효율성이 더욱 강조되고 있으며, 그에 따라 해수 속에서 고속 회전으로 더욱 가혹해진 캐비테이션 침식-부식 환경하에 놓인 선박의 프로펠러, 펌프 임펠러 및 케이싱 등의 금속재료 자체를 보호할 수 있는 고성능 재료의 개발이 요구되고 있기 때문이다. 또한 해양환경 하에서 무전해 니켈 도금 층에 대한 캐비테이션 침식 손상에 대한 연구는 미비한 실정이다. 본 연구에서는 회주철 표면에 무전해 니켈 도금을 실시하여 캐비테이션 침식 손상을 방지하고자 하였다. 무전해 니켈 도금을 실시하기 전 도금 층을 균일하게 형성하기 위해 샌드 페이퍼 #1200까지 연마 후 알칼리 탈지 실시하고, 산세(10% HCl)와 수세를 순차적으로 실시하여 전처리하였다. 이후 무전해 니켈 도금은 황산니켈, 차아인산나트륨, 구연산, 아세트산나트륨 그리고 미량의 질산납으로 구성된 도금욕에서 pH 4-6, $80-90^{\circ}C$의 조건으로 실시하였으며, pH는 NaOH를 이용하여 조정하였다. 이렇게 제작된 무전해 니켈 도금 층에 대하여 천연 해수 속에서 ASTM-G32 규정에 의거한 캐비테이션 침식실험을 통해 내구성을 평가하였다. 캐비테이션 실험 후에는 무게 감소량, 표면 손상깊이, 침식 손상 경향 등을 종합적으로 분석 비교하였다. 그 결과, 회주철에 대하여 무전해 니켈 도금을 실시할 경우 현저한 캐비테이션-침식 저항성 향상이 관찰되었다.

  • PDF

A Study on the Performance Characteristics of Turbocharged Engine for the Stable Control (터보차저 엔진의 안정적 제어를 위한 성능 특성에 관한 연구)

  • Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • In this study, the performance characteristics of turbocharged engine is analyzed. The methods of engine performance improvements are suggested not only for full load characteristics of the engine but also for partial load characteristics of the engine, which is more frequently used in actual driving conditions. The compression ratio of the compressor is increased rapidly in a straight line pattern until 1260 engine rpm, and after that it is increased slowly to 2.5 ratio. Also the brake mean effective pressure increased until 1260 engine rpm and decreased rapidly after 1600 engine rpm. The higher the pressure ratio, the better the fuel consumption, air excess ratio and brake mean effective pressure. But those are higher in the rated revolution range than in the mid-low revolution range. The turbocharger is operated in a stable condition from 1260 rpm and its efficiency is low in the low speed range for the reason of its characteristics. The results of this study can be applied in the fundamental control methods of turbocharged engine for stable load and speed.