• Title/Summary/Keyword: 연마조건

Search Result 153, Processing Time 0.027 seconds

Cutting Characteristics of Quartz by Abrasive Waterjet (연마제 워터 제트에 의한 쿼츠의 절단특성)

  • Jin, Yun-Ho;Chung, Nam-Yong;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.922-927
    • /
    • 2004
  • Abrasive waterjet (AWJ) cutting is an emerging technology for precision cutting of difficult-to-machining materials with the distinct advantages of no thermal effect, high machinability, high flexibility and small cutting forces. This paper investigated theoretical and experimental cutting characteristics associated with abrasive waterjet cutting of quartz GE214. It is shown that the proper variations of several cutting parameters such as waterjet pressure, cutting speed and cutting depth improve the roughness on workpiece surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of quartz GE214, the optimal cutting conditions to improve the surface roughness were proposed and discussed.

  • PDF

Wavelength and polarization selectivity of a side-polished fiber contacted with a metal-clad planar waveguide (금속 클래드 평면 도파로와 결합된 측면 연마 광섬유의 파장 및 편광 선택성)

  • 김광택;황중호;이준옥;김철호;황보승
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.134-139
    • /
    • 2002
  • We report an experimental investigation of the wavelength and polarization selectivity of a side-polished fiber in contact with a metal-clad planar waveguide. The influences of the structural parameters of the planar waveguide, including refractive index of the superstrate and metal thickness, on the optical transmission characteristics of the device were measured and explained. The conditions for high wavelength and polarization selectivity wore predicted and demonstrated experimentally.

Cutting Characteristics of Quartz by Abrasive Waterjet (연마제 워터 제트에 의한 쿼츠의 절단특성)

  • Chung, Nam-Yong;Jin, Yun-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.118-126
    • /
    • 2005
  • Abrasive waterjet (AWJ) cutting is an emerging technology for precision cutting of difficult-to-machining materials with the distinct advantages of no thermal effect, high machinability, high flexibility and small cutting forces. This paper investigated theoretical and experimental cutting characteristics associated with abrasive waterjet cutting of quartz GE214. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness on workpiece surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of quartz GE214, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel (스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

극소형 전자기계장치에 관한 연구전망

  • 양상식
    • 전기의세계
    • /
    • v.39 no.6
    • /
    • pp.14-19
    • /
    • 1990
  • 1. CAD system과 PROPS를 접속하여 CADsystem에서 Design된 surface를 사용할 수 있으며 Robot Kinematics를 graphic library화하여 surface배치 수상 및 path generation 및 animation을 통하여 가공작업을 위한 로보트 운동을 simulation할 수 있게 되었다. 2. Denavit-hartenberg transformation form에 의해 여러 Robot Kinematic을 일반적인 형식으로 library화 하였다. 3. 금형 가공의 공정들을 Menu로 만들어서 Expert system을 도입, 손쉽게 Interactive한 작업을 할 수 있게 하였다. 4. 차후의 연구 목표는 로보트 Calibration S/W의 개발 및 실현 그리고 Expert System을 이용한 Robot Program Generator의 완성을 통한 전체 Off-line programming System을 정립하는데 있다. 이를 위해서 더 실제적인 Tool Path Generation과 Expert System을 이용한 가공 조건의 결정 및 User Interface를 위한 Window가 개발되어야 한다. 5. 1차년도에 개발된 Robotonomic Tool System의 유연성을 확장시킨다. 실험결과를 바탕으로 공정 자동화 시스템을 확장시킨다. 6. 연마공정자동화에 필수적인 공구 및 공구 Tip의 표준화 및 자동교환장치를 개발한다. 7. 금형연마 Cell의 구성요소들간의 Interface 및 System Controller에서의 집적화를 시킨다.

  • PDF

Evaluation of Industrial Byproduct for the Adsorption of Arsenic (V) (재이용한 산업부산물에 의한 비소(V) 이온 흡착능 평가)

  • Park, Youn-Jong;Yang, Jae-Kyu;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.78-85
    • /
    • 2007
  • This study provides an attempt to evaluate sanding wastes, generated from a chemical company as a reused adsorbent. Organic impurities in the raw sanding wastes were removed by calcination at $550^{\circ}C$. Aluminum was a major inorganic composition in the raw sanding wastes and increased from 29.09% to 52.73% after calcination. Dissolved concentrations of heavy metals from the calcined sample were below 0.3 mg/L in a stability test at pH 2. From the pH-edge adsorption experiments with the calcined sanding wastes, As (V) was found to follow an anionic-type adsorption. Adsorption isotherm obtained with variation of the dosage of the calcined sanding wastes was better described by Freundlich equation than Langmuir one. Freundlich constants of K and 1/n were 4.244 and 0.316, respectively. The As (V) adsorption capacity of calcined sanding wastes estimated from Langmuir isotherm was 13.25 mg/g. From this study, the calcined sample was identified as a good reusable adsorbent in the view point of stability and adsorption capacity on As (V).

Effect of Electropolishing on Surface Quality of Stamped Leadframe (Stamped Leadframe의 표면 품질에 미치는 전해연마 효과)

  • 남형곤;박진구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • The effect of electropolishing far stamped leadframe on the removal of the edge burr and residual stress relief was examined. The present study showed that the electropolishing could be used for enhanced surface quality of stamped leadframes. The electropolishing was performed at the condition of 60% phosphoric acid electrolyte, 5 ampere of current and 3 cm electrode gap at $70^{\circ}C$ for 2 minutes for Alloy42 type leadframe, and $50^{\circ}C$ for 1.5 minutes for C-194 type leadframe. The FWHM values from X-ray diffraction showed that residual stress of electropolished leadframe recovered to the level of as-received raw materials and surface roughness measured by using AFM tuned out to be improved by 0.079 $\mu\textrm{m}$ and 0.014 $\mu\textrm{m}$ ($R_{rms}$) far alloy 42 and C-194 type leadframes, respectively. The plated thickness using XRF showed the improved uniformity in thickness variation by 0.4~0.5 $\mu\textrm{m}$ and grain growth, which is favorable for interface adhesion, was also observed from the bake test samples. We could certify dimensional stability of leadframe with inspection by means of 3D-topography and hardness measurements.

  • PDF

고밀도 유도결합형 $Cl_2/BCL_3/Ar$ 플라즈마를 이용한 sapphire의 식각 특성

  • 성연준;이용혁;김현수;염근영;이재원;채수희;박용조
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.31-31
    • /
    • 2000
  • Al2O3는 높은 화학적, 열적 안정성으로 인하여 미세전자 산업에서 절연막이나 광전자소자의 재료로써 널리 이용되고 있다. 특히, 사파이어는 고위도의 LED, 청색 LD의 재료인 GaN 계열의 III-Nitride 물질을 성장시킬 때 필요한 기판으로 보편적으로 사용되고 있다. 이러한 GaN계열의 광소자 제조에서 사파이어 기판을 적용시 지적되는 문제점들 중의 하나는 소자제조 후 사파이어의 결정 구조 및 높은 경도에 의해 나타나는 cutting 및 backside의 기계적 연마가 어렵다는 것이다. 최근에는 이온빔 식각이나 이온 주입 후 화학적 습식 시각, reactive ion etching을 통한 사파이어의 건식 식각이 소자 분리 및 backside 공정을 우해 연구되고 있다. 그러나 이러한 방법을 이용한 사파이어의 식각속도는 일반적으로 15nm/min 보다 작다. 높은 식각율과 식각후 표면의 작은 거칠기를 수반한 사파이어의 플라즈마 식각은 소자 제조 공정시 소자의 isolation 및 lapping 후 연마 공정에 이용할 수 있다. 본 연구에서는 평판 유도결합형 플라즈마를 이용하여 Cl2/BCL3/Ar 의 가스조합, inductive power, bias voltage, 압력, 기판온도의 다양한 공정 변수를 통하여 (0001) 사파이어의 식각특성을 연구하였다. 사파이어의 식각속도는 inductive power, bias voltage, 그리고 기판 온도가 증가할수록 증가하였으며 Cl2에 BCl3를 50%이하로 첨가할 때 BCl3 첨가량이 증가할수록 식각속도 및 식각마스크(photoresist)와의 식각선택비가 증가하는 것을 관찰하였다. 또한, Cl3:BCl3=1:1의 조건에 따라 Ar 첨가에 따른 식각속도 및 표면 거칠기를 관찰하였다. 본 연구의 최적 식각조건인 40%Cl2/40%BCl3/20%Ar, 600W의 inductive power, -300V의 bias voltage, 30mTorr의 압력, 기판온도 7$0^{\circ}C$에서 270nm/min의 사파이어 식각속도를 얻을수 있었다. 그리고 이러한 식각조건에서 표면의 거치기를 줄일수 있었다. 사파이어 식각은 보편적인 사파이어 lapping 공정시 수반되어 형성된 표면의 거치기를 줄이기 위한 마지막 공정에 응용될수 있다. 사파이어의 식각시 나타나는 식각 부산물은 플라즈마 진단방비인 optical emission spectroscopy (OES)를 통하여 관찰하였고, 식각시 사파이어의 표면성분비 변화 및 표면의 화학적 결합은 X-ray photoelectron spectroscopy(XPS)를 사용하여 측정하였다. 시각 전, 후의 표면의 거칠기를 scanning electron microscopy(SEM)을 통하여 관찰하였다.

  • PDF

The Relationship between Lens Properties and the Lens Wearer's Factors in RGP Lens Manufacturing (RGP렌즈 제조 시 렌즈 물성과 렌즈 착용자 요인과의 관계)

  • Park, Mijung;Park, Ha Young;Park, Jung Ju;Kong, Heejung;Cha, Young Hwa;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • Purpose: The present study was conducted to investigate the changes in the physical properties of RGP lenses induced by the polishing during the process of RGP lens manufacturing, and further evaluate the differences in the actual wearer's comfort and the tear film break-up time caused by these changes. Methods: RGP lenses (fluorosilicone acrylate material) were divided into 4 groups by the different lens-polishing time like 0, 25, 50 and 100 seconds and the thickness, the surface roughness and the wetting angle of those lenses were compared. Furthermore, the comfortability of the lens wear was surveyed after applying these lenses on the subject's eyes with normal tear volume and the non-invasive tear break-up time of the wearers was measured. Results: The central thickness of 4 RGP lenses made of different lens-polishing time was not significantly different however, the lens surface was changed smoother after polishing to be confirmed by scanning electron microscopy. The wetting angle of the RGP lens significantly decreased in accordance with the increase of polishing time. Thus, the difference of approximately $16^{\circ}$ between 0 second and 100 seconds-polishing was statistically significant. The actual wearing feeling of RGP lens was tended to improve in accordance with the increase of the lens wettability however, it was not proportional improvement. The non-invasive tear break-up time of the lens wearers showed different aspect compared with the changes in lens wettability and the actual feeling of RGP lens wear. Conclusions: In this study, better lens wettability, thinner lens thickness, and/or improved lens surface induced by physical stimuli in the process of RGP lens manufacturing was not well-correlated with the increase of actual subjective/objective satisfaction in RGP lens wear. Thus, the consideration of physical properties of the lens as well as the lens wearers' physiological factors in the process of RGP lens manufacturing may be suggested.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.