Evaluation of Industrial Byproduct for the Adsorption of Arsenic (V)

재이용한 산업부산물에 의한 비소(V) 이온 흡착능 평가

  • Park, Youn-Jong (Department of Environmental Engineering, Kwangwoon Universiy) ;
  • Yang, Jae-Kyu (Department of Environmental Engineering, Kwangwoon Universiy) ;
  • Choi, Sang-Il (Department of Environmental Engineering, Kwangwoon Universiy)
  • Published : 2007.08.31

Abstract

This study provides an attempt to evaluate sanding wastes, generated from a chemical company as a reused adsorbent. Organic impurities in the raw sanding wastes were removed by calcination at $550^{\circ}C$. Aluminum was a major inorganic composition in the raw sanding wastes and increased from 29.09% to 52.73% after calcination. Dissolved concentrations of heavy metals from the calcined sample were below 0.3 mg/L in a stability test at pH 2. From the pH-edge adsorption experiments with the calcined sanding wastes, As (V) was found to follow an anionic-type adsorption. Adsorption isotherm obtained with variation of the dosage of the calcined sanding wastes was better described by Freundlich equation than Langmuir one. Freundlich constants of K and 1/n were 4.244 and 0.316, respectively. The As (V) adsorption capacity of calcined sanding wastes estimated from Langmuir isotherm was 13.25 mg/g. From this study, the calcined sample was identified as a good reusable adsorbent in the view point of stability and adsorption capacity on As (V).

본 연구에서는 화학회사에서 발생되는 연마분진 폐기물의 흡착제로서의 재이용성을 평가하였다. 연마분진을 $550^{\circ}C$에서 하소시킴으로서 유기불순물을 제거하였다. 연마분진내의 주요 무기물은 Al이었으며 하소 후 Al 함량은 29.09%에서 52.73%로 증가되었다. 하소 후 시료의 안정성 평가를 실시한 결과 pH 2.0의 강한 산성조건에서도 모든 중금속들의 용출량은 0.3 mg/L 이하로 나타났다. pH 변화에 따른 As(V) 흡착실험에서 As(V)의 흡착효율은 전형적인 음이 온형 흡착경향을 보였다. 하소된 연마분진의 주입량 변화에 따른 As(V)의 등온흡착 실험결과는 Freundlich 등온흡착식이 Langmuir 등온흡착식보다 상대적으로 잘 표현되는 것으로 나타났다. Freundlich 등온흡착상수 K와 1/n은 각각 4.2442와 0.3161로 얻어졌다. Langmuir 등온흡착식으로 얻어진 하소된 연마분진의 최대 As(V) 흡착량은 13.25 mg/g이었다. 이러한 연구결과, 하소된 연마분진은 안정도 및 As(V) 흡착능을 고려하였을 때 재이용성이 양호한 흡착제로 나타났다.

Keywords

References

  1. 김광섭, 김병권, 홍순철, 장윤영, 양재규, 2006, 금속산화물 함유흡착제들의 독성 비소 제거능 비교, 2006년 대한환경공학회 추계학술연구발표회, 강릉대학교, p. 631-637
  2. 김성연, 김연식, 1995, 깁사이트를 원료로 한 고온촉매용 담체의 제조, 대한금속학회, 32(9), 49-58
  3. Anderson, M.A., Ferguson, J.F., and Davis, J., 1976, Arsenate adsorption on amorphous aluminum hydroxide, J. Col. Int. Sci., 54(3), 391 https://doi.org/10.1016/0021-9797(76)90318-0
  4. Arai, Y., Elzinga, E.J., Sparks, D.L., 2001, X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface, J. Col. Int. Sci., 235, 80-88 https://doi.org/10.1006/jcis.2000.7249
  5. Carrol-Webb, S.A., Walter, J.V., 1988, A surface complex reaction model for the pH dependence of corundum and kaolinite dissolution rate, Geo. Cos. Acta, 52(11), 2609-2623 https://doi.org/10.1016/0016-7037(88)90030-0
  6. Clifford, D.A. and Lin C.C., 1991, Arsenic (III) and arsenic (V) removal from drinking water in San Ysaidro, New Mexico, EPA/600/S2-90/011, Cincinnati, 1-7
  7. Jain, A., Raven, K.P., and Loeppert, R.H., 1999, Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry, Environ. Sci. Technol., 33, 1179-1184 https://doi.org/10.1021/es980722e
  8. Lee, W.H., Park, J.S., Sok, J.H., and Reucroft, P.J., 2005, Effects of pore structure and surface state on the adsorption properties of nano-porous carbon materials in low and high relative pressures, Appl. Sur. Sci., 246, 77-81 https://doi.org/10.1016/j.apsusc.2004.10.038
  9. Lin, T.F. and Wu, J.K., 2001, Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics, Wat. Res. 35, 2049-2057 https://doi.org/10.1016/S0043-1354(00)00467-X
  10. Manning, B.A. and Goldberg, S., 1997, Adsorption and stability of arsenic (III) at the clay mineral-water interface, Environ. Sci. Technol., 31, 2005-2011 https://doi.org/10.1021/es9608104
  11. McBride, M.B., 1982, $Cu^{2+}$-Adsorption characteristics of aluminum hydroxide and oxyhydroxides, Clays Clay Miner., 30(1), 21-28 https://doi.org/10.1346/CCMN.1982.0300103
  12. Mondal, P., Majumder, C.B., and Mohanty, B., 2006, Laboratory based approaches for arsenic remediation from contaminated water: Recent developments, J. Haz. Mat., B137, 464-479
  13. Parks, G.A., 1965, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, Chem. Rev., 65, 177-198 https://doi.org/10.1021/cr60234a002
  14. Pierce, M.L. and Moore, C.B., 1982, Adsorption of arsenite and arsenate on amorphous iron hydroxide., Wat. Res., 16, 1247-1253 https://doi.org/10.1016/0043-1354(82)90143-9
  15. Schindler, P.W., Liechti, P., and Westal, J.C., 1987, Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/ water interface, Neth. J. Ag.ri. Sci., 35, 219-230
  16. Stumm, W. and Morgan, J.J., 1996, Aquatic Chemistry, 3rd ed. Wiley New York, USA, p. 533-540