• Title/Summary/Keyword: 연료 액적

Search Result 178, Processing Time 0.034 seconds

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

The Effects of Spray Parameters on the Flame and Spray Characteristics for Liquid Fuel Spray Flame (액체연료 의 분사연소시 분사조건 이 화염 과 액적군 의 성질 에 미치는 영향)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.201-209
    • /
    • 1984
  • In order to examine the effect of initial spray condition on the spray combustion mode and flame characteristics, theoretical analysis was carried out to predict combustion mode and flame structure for various initial distribution of droplets in spray. A system of conservation equations of spray flame in two dimensional axisymmetric for two phase flow was solved by a discrete element method for n-Butylbenzen (C$_{10}$ $H_{14}$). As a results of present study, there are two principal group combustion modes that may occur independently for various initial group combustion numbers in a spray burner. These group combustion modes are termed as an external and internal group combustion mode. The critical group combustion number between the internal and external group combustion mode and the flame characteristics of those flame are also predicted. These results may be used as a basic data in the designing of new combustors as well as proper operating conditions for spray burners.s.

Vaporization of Hydrocarbon Fuel Droplet in High Pressure Environments (고압 환경하에서 탄화수소 연료 액적의 기화특성 연구)

  • Kim, Sung-Yup;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.127-132
    • /
    • 2003
  • A study of high-pressure n-heptane droplet vaporization is conducted with emphasis placed on equilibrium at vapor-liquid interface. General frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. The model is based on complete time-dependent conservation equations with a full account of variable properties and vapor-liquid interfacial thermodynamics. The influences of high-pressure phenomena, including ambient gas solubility, thermodynamic non-ideality, and property variation on the droplet evaporation are investigated. The governing equations and associated moving interfacial boundary conditions are solved numerically using a implicit scheme with the preconditioning method and the dual time integration technique. And a parametric study of entire droplet vaporization history as a function of ambient pressure, temperature has been conducted. Some computational results are compared with Sato's experimental data for the validation of calculations. For low ambient temperatures, the droplet lifetime first increases with pressures, then decreases for high pressures. For higher ambient temperatures, the droplet lifetime increase with less amplitude than that of low ambient temperatures, which then decreases with more amplitude than that of low temperatures. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the pressure goes up.

  • PDF

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

A Study on the Combustion Characteristics of Diesel Fuel Droplet with Additive Oxygenate and Paraffin (함산소 및 파라핀계 혼합 디젤유 액적의 연소특성에 관한 연구)

  • Kim, Bong-Seock;Miyamoto, Noboru
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • The single droplet combustion characteristics of multicomponent fuel such as diesel-oxygenate and diesel-paraffin blends under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may be concluded as follows : In the combustion of diesel fuel droplet with additive of oxygenate and paraffin, the dimensionless droplet size of $(D/D_o)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature diesel fuel evaporates and burns faster than usual diesel fuel. This rapid burning may result from so-called "micro-explosion" and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels. When compared to ordinary diesel fuel, neat oxygenate and paraffin fuels show blue flame during entire combustion which prove smokeless combustion.

Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition (연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구)

  • Kim, Sa-Yop;Lee, Keun-Hee;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

Method and characteristics of liquid atomization (액체 미립화의 방법과 특징)

  • 이충원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.10-16
    • /
    • 1983
  • 액체의 미립화는 기계산업분야 뿐만 아니라, 농약살포, 화학 공학의 분무건조, 반응의 촉진, 분 체제조, 식품공업 등 폭넓게 이용되며 또한 각분야에서 그 필요성이 강조되고 있다. 특히 기계 산업분야에서는 액체연료의 분무연소(boiler, gas turbine, 자동차용engine등) 원자로 노심의 spray cooling, spray drying, spray painting 등 그 이용도는 날로 증가되는 추세에 있다. 액체를 미 립화하는 이유는 각각의 분야나 사용하는 목적에 따라 다르지만, 대별하면 다음과 같다. (1) 액체의 단위 체적당 표면적을 증대시키기 위하여 (2) 직경이 작은 입자의 필요성 (3) 균일한 입경의 액적군을 얻기 위하여 등을 들 수 있다. 액체의 미립화에 대한 요구는 산업의 발당, 대기오염, 생energy 등의 문제가 중요시됨에 따라 다양화되고 있다. 따라서 응용면에서는 atomizer의 성능개선과 설계법, 새로운 미립화방법, 상업에의 분무이용기술, 분무계측법 등의 개발이 필요하게 된다. 액체미립화에서 취급하는 사항은 그 내용에 따라 다음과 같이 분류된다. (1) 액체의 미립화기구 : 기액계면의 불안정성과 분열기구에 관한 것으로, 액체형상으로써 액주, 액막 및 액적으로 나눌 수 있다. (2) 액체의 미립화 방법과 특성 : energy의 종유와 부가방식에 따랄 나누어진다. (3) 합체, 분산, 증발 등 분무의 운동이나 열적거동 (4) 분무입경이나 운동의 계측법과 특성도시 (5) 액체미립화의 각종응용 본보에서는 상기의 각 항목중, 특히 액체의 미립화방법과 분무특성에 대해서만 말하기로 한다.

  • PDF

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

Fabrication of Nano-sized ZnO Colloids from Spray Combustion Synthesis (SCS) (분무연소합성(SCS)법에 의한 나노크기 산화아연(ZnO) 콜로이드의 제조)

  • Lee, Sang-Jin;Lee, Sang-Won;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Nano-sized ZnO colloids were prepared by use of spray combustion method. for combustion reaction, $Zn(NO_3)_2{\cdot}6H_2O$ and $CH_6N_4O$ were employed as an oxidizer and a fuel. Exothermic peak was shown at $230^{\circ}C$ by DTA/TGA, and it was considered as a combustion reaction followed by ignition of the precursor mixture. In case of spray combustion method, because insufficient contents of molecules and radicals generated from precursor droplets may lead an incomplete igmition, the ignition temperature of combustion chamber was chosen at $500^{\circ}C$. For diminishing aerosol coagulation, the droplet number concentration was reduced by filter media. The fluid was laminar with 2.5 seconds of aerosol residence time. The synthesized colloids had spherical shape with 180 nanometer size, and the crystalline phase was ZnO with hexagonal structure.