• Title/Summary/Keyword: 연료 분사계

Search Result 60, Processing Time 0.028 seconds

A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System (전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구)

  • Jang, S.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

Computer Simulation of the Electronic Hydraulic Ultra - High Pressure Fuel Injection System (전자유압식 초고압 연료분사계의 시뮬레이션에 관한 연구)

  • Jang, Se-Ho;Ahn, Su-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.82-92
    • /
    • 1996
  • A computer simulation with predict the fuel injection rates and the fuel injection pressure behaviors in diesel engine fuel injection systems would by very useful in designing or improving fuel injection systems. In this paper we developed computer program in order to predict the behaviors of the fuel injection rate and the injection pressure for Electronic Hydraulic Ultra-High Pressure Fuel Injection System. We've applied the continuity and momentum equations for the hydraulic phenomena and the dynamics of individual components of the Electronic Hydraulic Fuel Injection System. To solve all the equations numerically we've applied the Runge-kutta IV method. Water hammer equations were applied for the hydraulic pipe solution, and the method of characteristics was employed in our calculations. The simulation results were compared with the experimental results for: Accumulator pressure, Injection pressure and unjection rate. As a result, The simulation results agree very well with our experimental results. We found that a large accumulator and the high speed solenoid valve were required, and the compression volume of the fuel had to be as small as possible in order to acheive ultra-high pressure fuel injection.

  • PDF

원통형 연소실내 분무된 액적군의 화염전파에 관한 수치해석

  • 이영집;백승욱;김택영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.899-906
    • /
    • 1990
  • 본 연구에서는 자동차엔진에 대한 응용의 일환으로써 밀폐된 축대칭 연소실내 의 정지하고 있는 공기에 분사에 의해 형성된 분무액적들을 점화원을 이용하여 화염을 생성시키고 그에 따른 화염전파 및 낮은 마하수에서의 유동현상과 이상간의 물리적 관 계를 다차원 유한차분법에 의한 물리적인 지배방정식의 동시해법인 ALE(Arbitrary La- ngrangian Eulerian)방법으로 구성되어 있는 CONCHAS-code를 이용하여 해석하고, 연료 액적의 분사각도, 크기 및 연소실내 기체유동의 각속도의 변화에 의한 분무연소의 과 도적특성을 고찰하고자 한다.

Flame Formation of Ultrasonically-atomized Liquid-fuel Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 형성)

  • Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and temperature gradient were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. In addition, the fuel consumption was measured using the balance during the combustion reaction. As a result, the consumption of atomized fuel increased with the increasing flow-rate of carrier-gas, but any correlation between the air/fuel ratio and carrier-gas flow-rate was not found at the low flow-rate condition. Also, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas and power consumption of ultrasonic oscillator.

Air Flow Rate Measurement in Multi Point Injection Engine U sing Ultrasonic Sensors (초음파센서를 이용한 전자식 연료분사엔진의 흡기유량측정)

  • Park, K.S.;Kim, J.I.;Kauh, S.K.;Noh, S.T.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-65
    • /
    • 1995
  • In this study an air flow meter was developed for MPI engine using ultrasonic sensors. The major characteristcs of the ultrasonic flow meter are high speed response, flow direction recognition and linear output. The air flow rate measurements were conducted at upstream of the throttle and intake manifold. The characteristics of the ultrasonic flow meter are compared with those of the Bosch hot wire flow meter at both steady and unsteady engine conditions.

  • PDF

An Experimental Study on the Combustion Characteristics with Fuel Injection System in the Diesel Engine (디젤엔진의 연료분사계가 연소특성에 미치는 영향에 관한 실험적 연구)

  • 윤천한;김경훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1244-1249
    • /
    • 2001
  • The characteristics of engine performance with fuel injection system in D.I. diesel engine were studied in this paper A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozz1e hole, diameters of an injection pipe and injection timing in the fuel injection system. The authors have obtained the results that optimizing the factors of fuel injection system is siginificant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

  • PDF

Numerical analysis of turbulent combustion in Supercritical combustor with multi-injector (다중 분사기가 장착된 초임계 연소기 난류연소해석)

  • Jeon, Tae Jun;Park, Tae Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.803-810
    • /
    • 2017
  • the liquid oxygen transitions to a supercritical state, causing rapid changes in properties and pseudo boiling in supercritical combustion. the combustion reaction operating in a supercritical state depends on the turbulence diffusion caused by difference of density, therefore, a study of the diffusion flow and pseudo boiling is required. Many researchers have studied these phenomena in the supercritical combustion, but A case study by various variables is inadequate. In this study, the flow field and flame structure were investigated numerically by changing the recirculation flow and liquid oxygen core length through oxygen-fuel ratio(O/F), combustor diameter and recess ratio at supercritical pressure condition.

  • PDF

Influence of Critical Point of Jet Injected into Near-Critical Environment on Phase Change (근임계 환경으로 분사되는 제트의 임계점이 상변화에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Son, Min;Shin, Bongchul;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.475-481
    • /
    • 2017
  • In this paper, high speed camera images were used to analyze the supercritical injection behavior of liquid hydrocarbon compounds used as main components of propellant fuel. Decane and Methylcyclohexane (MCH), which have different critical points among kerosene constituents, were selected as experimental fluid and Shadowgraphy technique was used for the analysis. The difference in the temperature variation from the initial injector state of the subcritical condition until the vaporization occurs was represented by the different behaviors of Decane and MCH. However, under the Supercritical conditions, the enthalpy of vaporization near the critical point approaches zero and the phase change to the Supercritical phase occurs instead of vaporization process. In the phase change of the Supercritical system, there was no rapid density change, so the liquid state image was observed in both the Decane and MCH.

  • PDF

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System (분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션)

  • Wang, W.K.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF