• Title/Summary/Keyword: 연료효과

Search Result 881, Processing Time 0.034 seconds

Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea (원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교)

  • Lee, Yongsung;Kim, Hyun Seok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.607-625
    • /
    • 2021
  • The objective of this study is to estimate the relationship between CO2 emissions and both nuclear power and renewable energy generation, and compare the cost efficiencies of nuclear power and renewable energy generation in reducing CO2 emissions in Korea. The results show that nuclear power and renewable energy generation should be increased by 1.344% and 7.874% to reduce CO2 emissions by 1%, respectively. Using the estimated coefficients and the levelized costs of electricity by source including the external costs, if the current amount of electricity generation is one megawatt-hour, the range of generation cost of nuclear power generation to reduce 1% CO2 emissions is $0.72~$1.49 depending on the level of external costs. In the case of renewable energy generation, the generation cost to reduce 1% CO2 emissions is $6.49. That is, to mitigate 1% of CO2 emissions at the total electricity generation of 353 million MWh in 2020 in Korea, the total generation costs range for nuclear power is $254 million~$526 million for the nuclear power, and the cost for renewable energy is $2.289 billion for renewable energy. Hence, we can conclude that, in Korea, nuclear power generation is more cost-efficient than renewable energy generation in mitigating CO2 emissions, even with the external costs of nuclear power generation.

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Countermeasures to the Introduction of Low Caloric Gas Fuel for Natural Gas Engine (저열량 가스 적용에 따른 천연가스엔진의 대응 방안 연구)

  • Park, Cheol-Woong;Kim, Chang-gi;Oh, Se-Chul;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2021
  • In order to cope with the problems that may occur when the natural gas used in Korea becomes low in calories, the problems that may have to the domestic industrial gas equipment must be identified in advance, and based on this, countermeasures for efficient use of energy must be preceded. In this study, in order to solve the problem of deterioration of engine output performance and efficiency due to the introduction of low calorific gas when using a lean-burning natural gas engine that complies with the EURO-6 regulation, specific control plans and results based on the experiment are intended to be presented. In order to identify the improvement effect by the control variable represented by the ignition timing under the full load condition at the engine speed of 1,400 rpm and 550 Nm, 2,100 rpm, which is the engine speed at the rated operation condition, the thermal efficiency and exhaust gas characteristics were identified and optimized by changing the ignition timing for each gas fuel. In the case of pure methane, which shows the lowest value based on the torque under the full load condition, if the ignition timing is advanced by about 2 CAD from the reference ignition timing, the torque can be compensated without a large increase in NOx emission.

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

Fabrication of Electrospun Composite Membranes with Silk Powder (실크 입자가 도입된 전기방사 복합막 제조)

  • Seo, Young Jin;Kang, Hoseong;Im, Kwang Seop;Choi, Kang-min;Park, Chi Hoon;Nam, Sang Yong;Jang, Hae Nam
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 2022
  • As the issue of reducing greenhouse gases is emerging due to global warming and extreme weather, research on materials capable of radiative cooling without energy consumption is being actively conducted. Among them, silk is known as a natural self-cooling material, but in the conventional mixing process using chemically powdered silk, there is a problem that the radiative cooling effect disappears by the collapses of the intrinsic crystal structure of silk fibroin, so it is difficult to manufacture it in the form of a film or coating agent for radiative cooling. In this study, various types of membranes were manufactured using silk powder that went through a physical pulverization process that does not damage the intrinsic structure of silk fibroin, and the study was conducted to examine its applicability as a coating agent. Electrospun membranes and flat sheet membranes were prepared by using silk fibroin powder for this purpose, and it was observed that the viscosity of the solution had a significant effect on the membrane fabrication and its properties.

$CO_2$ Refrigeration, Air Conditioning and Heat Pump Technology Development in Europe

  • Pettersen, Jostein;Neksa, Petter
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.53-64
    • /
    • 2002
  • $CO_2$ 20세기 초 천연 냉매 $CO_2$는 광범위하게 사용되었지만 프레온계 냉매의 출현으로 1940년경부터 $CO_2$냉매는 사용이 제한되었다. 그러나 반 세기 동안 사라졌던 $CO_2$냉매는 1980년 후반에 노르웨이 과학 기술대학 (NTNU)과 북구 최대 민간연구소 (SINTEF)의 Lorentzen 교수에 의해 $CO_2$천연 냉매 사용을 재고하게 되었다. 프레온계 냉매의 환경적 논쟁이 쟁점이 되면서 천연 냉매 사용을 재고하게 되었다. 특히 비가연성과 비유독성으로 인한 $CO_2$냉매가 주목을 받고 있다. 초월임계 사이클레서의 고압 제어에 대한 새로운 개념은 Lorentzen 교수와 동료 연구원에 의해서 특허로 제안되었다. 이에 대한 상업적 권리를 Norsk Hydro사는 1990년에 얻었고,1990년대 초반에 NTNU/SINTEF의 공동 연구개발 프로그램을 통해 기술 경쟁력과 실현 가능성이 검증되었다. 현재 연구소에서는 최초로 초월임계 $CO_2$사이클을 이용한 상업용 온수 열펌프 시스템, 2003년 시작할 연료전지 전기 자동차에 대한 연구를 수행하고 있다. NTNU/SINTEF에서 개발된 $CO_2$기술은 Hydro-SINTEF 공동 벤처 기업인 Shecco기술회사를 통해 제조업자에게 허가된다. 본 고에서는 NTNU/SINTEF에서 수행하였거나 수 중인 과제들을 중심으로 유럽의 $CO_2$시스템의 결과와 주요 개발 범위를 정리하였으며, 특히 작동유체로서의 $CO_2$냉매의 특징을 간단히 설명하고, 온 수 열 펌프, 자동차용 공조기 및 열 펌프, 상업 냉동기 등이 기술되었다. 그 외 압축기 위주의 요소기술 개발에 관한 내용도 기술되었고, 차세대 기술 경향과 전망에 대해서도 제시되었다. 제시되었다.성균 350$\times$$10^4$ CFU균, 방선균 434$\times$$10^4$ CFU균, 진균 676$\times$$10^4$ CFU균으로 진균의 개체수가 비교적 높게 나타났으며, 비산불지역에서는 호기성균 328$\times$$10^4$ CFU균, 방선균 319$\times$$10^4$ CFU균, 진균 461$\times$$10^4$ CFU균으로 진균의 개체수가 높게 나타났다. 토양미생물은 호기성균, 방선균, 진균 모두 비산불지역 보다 산불지역에서 많이 나타났다. 본 조사지역에서 호기성균은 활엽수림보다 침엽수림에서 많게 나타났으며, 방선균과 진균은 침엽수림보다 활엽수림에서 많이 나타났다.효과와 이를 이용한 자기냉동의 방법 그리고 최근에 이루어진 새로운 진전에 대해 소개하고 공기조화 및 냉동분야에의 적용 가능성을 전망해 보고자 한다.및 도입 등 선주들에게 다양한 선박건조자금을 제공하여 내수기반 확충에도 노력해야 할 것 이다.있었다., 인삼이 성장될 때 부분적인 영양상태의 불충분이나 기후 등에 따른 영향을 받을 수 있기 때문에 앞으로 이에 대한 많은 연구가 이루어져야할 것으로 판단된다.태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요 소를 지닌 병렬적 합성어([$[W1]_{XO-}$ $[W1]_{XO}$ ]$_{XO}$)로 그리고 [-wh] 의미의 겹의문사는 중복된 발은을 지닌 한 단어로 ([W]$_{XO}$ )

  • PDF

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.

Analyzing Time in Port and Greenhouse Gas Emissions of Vessels using Duration Model (생존분석모형을 이용한 선박의 재항시간 및 온실가스 배출량 분석)

  • Shin, Kangwon;Cheong, Jang-Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.323-330
    • /
    • 2010
  • The time in port for vessels is one of the important factors for analyzing the operation status and the capacity of ports. In addition, the time in port for vessels can be directly used for estimating the greenhouse gas emissions resulted from vessels in port. However, it is unclear which variables can affect the time in port for vessels and what the marginal effect of each variable is. With these challenges in mind, the study analyzes the time in port for vessels arriving and departing port of Busan by using a parametric survival model. The results show that the log-logistic accelerated failure time model is appropriate to explain the time in port for 19,167 vessels arriving and departing port of Busan in 2008, in which the time in port is significantly affected by gross tonnage of vessels, service capacity of terminal, and vessel type. This study also shows that the greenhouse gas emission resulted from full-container vessels, which accounted for about 61% of all vessels with loading/unloading purpose arriving and departing port of Busan in 2008, is about "17 ton/vessel" in the boundary of port of Busan. However, the hotelling greenhouse gas emissions resulted from non-container vessels (3,774 vessels; 20%) are greater than those from the full-container vessels. Hence, it is necessary to take into account more efficient port management polices and technologies to reduce the service time of non-container vessels in port of Busan.

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF