• Title/Summary/Keyword: 연료전지 전기자동차

Search Result 112, Processing Time 0.027 seconds

그린빌딩을 위한 저압 직류배전기술

  • Lee, Gyeong-Ho
    • KIPE Magazine
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 2010
  • 최근 그린에너지 시대의 급작스런 도래와 더불어 전력산업의 패러다임 변화에 따라 전기에너지의 고효율 사용과 지능형 전력망 기술인 스마트그리드가 국가차원의 저탄소 녹색성장의 중추 산업분야가 될 전망이다. 이와 더불어 그린홈, 그린빌딩, 그린ICT, 신재생에너지 및 전기자동차를 망라하는 고효율 에너지 네트워크 인프라로 직류배전이 부각되고 있다. 최근 태양광, 연료전지 등 직류 기반의 분산전원 보급의 활성화, 정보화 확산으로 인해 직류를 필요로 하는 정보통신기기의 대폭확대, 전기자동차 보급에 따른 전력저장장치의 확산, LED와 같은 조명부하의 확대 등 변화된 환경 속에 전체 시스템 에너지 효율화, 전력품질의 개선을 위해 교류(AC)가 아닌 직류(DC)로 공급하는 직류배전의 도입 연구가 진행되고 있다. 본고에서는 미래 직류전력시스템의 예측 및 당사가 2009년 말 그린홈에 직류배전을 구축한 실증사례를 소개하고 현재 조기 상용화를 목표로 기술개발을 진행 중인 그린빌딩 적용을 위한 저압 직류배전기술의 개념 및 구현기술을 제안하고자 한다.

Technical evaluation and possibility for Fuel Cell Vehicle (연료전지 자동차의 가능성과 기술분석)

  • Kim, G.Y.;Eom, S.W.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1213-1214
    • /
    • 1995
  • The advantages for using fuel cell instead of storages for powering electric vehicles are as follows : the energy density of fuel cell is greater than that of battery, fuel cell can be recharged much faster than battery. The objectives of this study are to investigate the status of Fuel Cell Vehicle technologies.

  • PDF

Performance Analysis of Fuelcell/Battery Hybrid Vehicles (연료전지/축전지 하이브리드 자동차의 구동 성능 해석)

  • Lee, Bong-Do;Lee, Won-Yong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.712-714
    • /
    • 1998
  • Fuel cell systems offer high energy efficiencies for transportation application. In addition, they can use alcohols and alternative fuels as the fuel, while producing little or no noxious emissions. Fuel cell-powered vehicles should be competitive in performance characteristics and in capital and maintenance costs with internal combustion engine vehicles. The objective of the present study is to design a fuelcell/battery powered vehicles to analyze technical feasibity.

  • PDF

Basic Design of Fuel Cell Powered Vehicies (연료전지 자동차 구동시스템 개념 설계)

  • Lee, Bong-Do;Lee, Won-Yong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.264-266
    • /
    • 1997
  • Fuel cell systems offer high energy efficiencies for transportation application. In addition, they can use alcohols and alternative fuels as the fuel, while producing little or no noxious emissions. Fuel cell-powered vehicles should be competitive in performance characteristics and in capital and maintenance costs with internal combustion engine vehicles. The objective of the present study is to design a fuel cell-powered passenger car to analyze technical feasibility.

  • PDF

High Ratio Boost Bidirectional Converter with Tap Reactor (탭리액터를 이용한 고승압 양방향 DC/DC 컨버터)

  • Han, Chang-Woo;Choi, Myeong-Soo;Kim, Tae-Woong;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.195-196
    • /
    • 2018
  • 제안하는 고승압 양방향 DC/DC 컨버터는 직류 탭리액터를 이용하여 인터리브드 형태와 유사한 승압형 컨버터로써 변압기 턴비를 작게 할 수 있어 고승압에 유리하다. 연료전지 응용분야에 적용가능하며 양방향제어가 가능하기 때문에 전기자동차와 같은 견인구동 응용분야에도 적용할 수 있는 장점이 있다.

  • PDF

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle (수소연료전지자동차의 절연성능 평가방법에 관한 고찰)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Kim, Hyang-Kon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.810-818
    • /
    • 2011
  • This paper analyzed the suitability about the isolation performance criteria which was based on human impedance and effect of current in IEC 60479-1 on the safety of human being was examined. The method of evaluation by megger and DC voltmeter was analyzed. The differences of isolation performance according to design of high-voltage system were analyzed. The factors which affect the insulation performance were analyzed for HFCV, EV, HEV, etc. through analysis of the isolation performance evaluation method. Finally, design for improved isolation performance was proposed.

Analysis of Electro-magnetic Interference Noise for Eco-friendly Vehicle (친환경 자동차의 전자파 방사 노이즈 특성 분석)

  • Kim, Hae-Sung;Yong, Boo-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.76-81
    • /
    • 2011
  • Fossil fuel, the energy source of internal combustion engine automobiles, is limited in resource and has caused environmental issues for decades. Accordingly, automobile manufacturers from many countries around the world are developing or producing eco-friendly vehicles that utilize alternative sources of energy. These vehicles are equipped with many electronic and electrical components which operate on high voltage and/or large current that were not used in conventional combustion engine automobiles. In this paper, in order to analyze the electro-magnetic interference noise, electric vehicles and fuel cell electric vehicles are tested under the guidelines of KMVSS (Korean Motor Vehicle Safety Standards) as well as under test modes that are not stipulated under the guidelines.

Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측)

  • Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System (전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석)

  • Song, H.Y.;Choi, J.H.;Hwang, S.H.;Jeon, K.K.;Choi, S.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF