• Title/Summary/Keyword: 연료액막량

Search Result 3, Processing Time 0.016 seconds

Estimation of Wall Wetting fuel by FRFID in an S.I. Engine (가솔린엔진에서 FRFID를 이용한 액막 연료량 추정)

  • 황승환;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.63-70
    • /
    • 1998
  • According to the stringent exhaust emission regulation control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. In this paper, the quantitative measurement method for the port fuel film is studied by using Fast Response Flame Ionization Detector(FRFID). The mass of fuel film on the port wall was measured by using the methods of fuel injection off, injection on and regression. The Fuel film mass was increased with incresing load at the same engine speed.

  • PDF

Estimation of Wall Wetting Fuel at Intake Port and Model Based Prediction A/F in a S.I. Engine (가솔린 엔진에서 액막 연료량 추정 및 이를 이용한 공연비 예측에 관한 연구)

  • 황승환;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.116-122
    • /
    • 1999
  • According to the stringent exhaust emission regulation, precise control of air fuel ratio is one of the most important issues on gasoline engine. Although many researches have been carried out to identify the fuel transport phenomena in a port fueled gasoline engine, complexity of fuel film behavior in the intake port makes it difficult. The fuel film behavior was investigated recently by using visualization method and these gave us qualitative understanding. The purpose of this study is to estimate of wall wetting fuel in the intake port and the inducted fuel mass was predicted by using wall wetting fuel model . The model coefficient($\alpha$,$\beta$) and fuel film mass on the port wall were determined from measured in-cylinder HC concentration using FRFID after injection off. The fuel film mass was increased, but $\alpha$(ratio of directly inducted fuel mass into cylinder from injected fuel mass) was decreased with increasing load at the same engine speed. $\beta$is nearly constant value(0.8~0.9). when injected fuel mass is varied at 1500rpm , the calculated air fuel ratio using well wetting fuel model was nearly the same as measured by UEGO.

  • PDF

Investigation for Spray Characteristics of Dual Swirl Injector (이중 스월 인젝터의 분무특성에 관한 연구)

  • Park Hee Ho;Jeong Chung Yon;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Both numerical analysis and cold tests for the swirl coaxial type injector were performed to obtain the influence of spray angle, velocity ratio and liquid film thickness for pressure drop and recess. The basic experimental and numerical data obtained in this study can be applicable to the performance design of swirl coaxial type injector. Spray angle was not affected by the applied test pressure drop, but spray angle was affected by tangential velocity ratio and shape factors. Feasibility of numerical analysis for the liquid film thickness and spray angle was confirmed, and the change of liquid film thickness by tangential velocity ratio affected more seriously than pressure drop, and liquid film thickness was decreased with increasing tangential velocity ratio.