• Title/Summary/Keyword: 연료비율

Search Result 363, Processing Time 0.02 seconds

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Experimental Study on Autothermal Reformation of Methanol with Various Oxygen to Methanol Ratios for Fuel Cell Applications (연료전지용 메탄올 자열 개질기의 산소-메탄올 비율에 따른 성능 실험)

  • Hwang, Ha-Na;Shin, Gi-Soo;Jang, Sang-Hoon;Choi, Kap-Seung;Kim, Hyung-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • The use of Hydrogen as a fuel is receiving considerable attention and as a result, research on novel methods of hydrogen production is necessary so that the hydrogen demands in the future can be satisfied. This study presents experimental data on methanol Autothermal Reformation that quantifies the relationship between the oxygen-to-methanol ratio ($O_2/CH_3OH$) and reformer efficiency. For each catalyst configuration, the $O_2/CH_3OH$ was varied from 0.1 to 0.4, with an increment of 0.05, to investigate the effects of $O_2/CH_3OH$ on the reactor performance, including temperature profile, conversion, and efficiency. $O_2/CH_3OH$ was increased from 0.15 to 0.20, and the catalyst bed temperature increased by $235^{\circ}C$ to approximately $550^{\circ}C$. The catalyst bed temperature increased with increasing $O_2/CH_3OH$ as the reaction shifted from endothermic to exothermic reaction and as a result, excess heat, which raised the reactor temperature, was generated. The reactor performance was shown to be highly dependent on $O_2/CH_3OH$. The optimum $O_2/CH_3OH$ = 0.30 found in the experimental tests is 30% higher than the theoretical optimum of 0.23. This is attributed to a combination of factors such as the concentrations of the $O_2$ and $CH_3OH$ gas, reaction rate, catalyst effects, heat loss from the reactor, and the difference between the actual amounts of reaction products formed and the theoretical amounts of the reaction products.

A Study on the Characteristics of Waste Biomass Fuel by the Conditions of Torrefaction and Biomass Mixing Ratio (반탄화 및 혼합비율 조건별 폐바이오매스 연료 특성 연구)

  • Jo, Eun-Ji;Jin, Yong-Gyun;Hyeon, Wan-Su;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • In this study, the analysis of torrefaction products was carried out for fueling of sewage sludge. The mixed samples were composed as follows : 50% of sewage sludge and 50% of rice husk and CR(Coffee Residue). In this experiment, the reaction time(30min, 60min) and temperature($200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$) were expressed as a single variable using SF(Severity Factor). As a result, it was confirmed that as the SF increased, the heating value and fuel ratio increased, but the CI(Combustibility Index) decreased. The heating value was similarly increased as CR(Coffee Residue) and SF increased. The fuel ratio range of mixed samples was equal to that of lignite(0.5~1.0) in case of SF lower than 6.19 and that of bituminous coal(1.0~1.8) in case of SF higher than 7.36 or above. The CI showed a stable range(3,000~5,500kcal/kg) in low SF as the content of mixed samples contained more rice husk than CR.

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.

A Study of Improving Combustion Stability with Sonic Wave Radiation (음파를 이용한 연소 안정성 개선에 관한 연구)

  • Min, Sun-ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.401-406
    • /
    • 2020
  • NOx (nitrogen oxide) in the exhaust gas engines causes severe air pollution. NOx is produced under high-temperature combustion conditions. EGR (exhaust gas recirculation) is normally used to reduce the combustion temperature and NOx production. As the EGR ratio increases, the NOx level becomes low. On the other hand, an excessively high EGR ratio makes the combustion unstable resulting in other air pollution problems, such as unburned hydrocarbon and higher CO levels. In this study, the improvement of fuel droplets moving by the radiation of sonic waves was studied for the stable combustion using analytic and experimental methods. For the analytical study, the effects of the radiation of a sonic wave on the fuel droplet velocity were studied using Fluent software. The results showed that the small droplet velocity increased more under high-frequency sonic wave conditions, and the large droplet velocity increased more under low-frequency sonic wave conditions. For the experimental study, the combustion chamber was made to measure the combustion pressure under the sonic wave effect. The measured pressure was used to calculate the heat release rate in the combustion chamber. With the heat release rate data, the heat release rate increased during the initial combustion process under low-frequency sonic wave conditions.

Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea (숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Jang, Mina;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The objective of this study was to analyze the changes of crown fire hazard possibility from the effects of forest tending works (FTW) in Pinus densiflora stands in Korea. The study sites were located in Youngju (FTW) and Bonghwa (Control) areas. Ten representative sample trees were destructively felled at each areas to analyze the crown fuel characteristics. The results of this study showed that crown fuel moisture content in Youngju and Bonghwa areas were 103.6% and 104.4%, respectively. The needles and twigs with less than 1cm diameter accounted 50.3% of the total crown fuel load in Youngju area and 62.0% in Bonghwa area. On the other hand, it was observed in Youngju that the canopy bulk density was $0.11kg/m^3$ lower but have 1.3 m higher average canopy base height therefore having a possibility of lower crown fire hazard as compared to Bonghwa that had higher canopy bulk density and lower canopy base height.

High Pressure Refueling Method for HCNG Gas Supply (HCNG 가스공급을 위한 고압혼합 충전방안)

  • Kim, Sang-Min;Lee, Joong-Seong;Han, Jeong-Ok;Lee, Yeong-Cheol;Kim, Yong-Cheol;Chae, Jeong-Min;Hong, Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Mixture of hydrogen and natural gas HCNG mixing equipment production and refueling experiment were performed for supply and product. Hydrogen and CNG in 30 : 70 ratio is mixing of HCNG was performed using ratio control. HCNG refueling method was calculated after reading the pressure of tank for full refuel, amount refuel. Both full refuel and amount refuel results mixed ratio 30 : 70 in the error limits of $H_2{\pm}2%$ met the criterion. HCNG composition analysis result in refueling tank using gas chromatography is satisfying the error limits in refuel tank 30 : 70 ratio were confirmed.

Diesel Engine Combustion Characteristics on the Natural Gas Mixing (천연가스 혼합에 의한 디젤기관의 연소특성)

  • Park, Myung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.9-12
    • /
    • 2007
  • In this study, a new method of combustion characteristics have been proposed to reduce exhaust emissions in a diesel engine using four kinds of mixed fuel. Mixed fuels show four different torque ratios between diesel oil md natural gas, which are 4:0, 3:1, 2:2 and 1:3. In order to investigate the exhaust gas during combustion, exhaust gases are sampled by gas analyzer, for example NOx, Soot, CO, and HC, as the RPM changed. As a result, the NOx, CO, and HC concentrations of mixed fuel are higher than those of diesel oil only. However, the Soot concentration of mixed fuel is lower when diesel oil is burned.

  • PDF

A study on Coal Water Mixture production using various mill method (석탄 분쇄방법에 따른 CWM 제조 특성연구)

  • Ra, Howon;Choi, Young Chan;Lee, Dongwook;Hong, Jaechang;Bae, Jongsoo;Park, Sejun;Lee, Youngju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.78.1-78.1
    • /
    • 2011
  • 분포지역과 매장량이 한정되어 있는 석유에 비하여 석탄은 가채년수가 길고 세계 전역에 널리 분포되어 있으므로 향후 안정적인 에너지 공급으로 각광받고 있다. 석탄을 이용하여 CWM을 제조하는 기술은 석유에 비하여 저장, 수송, 분진 비산등의 문제점을 개선하여 위하여 1980년대부터 석탄 물 혼 합연료(Coal-Water Mixture)의 기술개발을 위한 연구가 진행되었다. 이는 미분탄(유연탄)에 30%정도의 물과 약간의 첨가제를 혼합하여 유체화하여 수송성은 액체연료와 같고 연소성은 석탄의 성상을 갖는 특징을 가지게 된다. 본 연구에서는 당센터에서 보유하고 있는 습식 분류층 가스화장치에 적용하기 위한 CWM(Coal Water Mixture)제조 특성을 연구하였다. 습식 석탄 가스화기에 사용되는 CWM은 미분되어진 석탄과 물, 첨가제를 일정비율로 혼합하여 사용하게 된다. 이때 공급되어지는 미분의 입도와 분쇄 형태에 따른 입자 형태, 입자의 분포에 따라서 CWM의 특성이 각각 다르게 나타나게 된다. 이때 만들어진 CWM의 농도와 점도 특성에 따라서 버너의 성능 및 가스화기 운전 조건등에 많은 영향을 미치게 된다. 습식 석탄 가스화에 적용된 예정인 대상탄을 대상으로 하여 석탄분쇄 형태에 따른 CWM의 제조 특성을 실험하였다.

  • PDF

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A cause of noise and vibration which come from a Combustion of gas heater are a combustion roar and Combustion oscillation. A character of a combustion roar is that sound pressure is distribute with broad band frequency. otherwise, The presence of combustion oscillation caused by positive Feed Back in Combustion Chamber break out a noise and vibration. Accordingly, The method that be solved a noise and vibration is to make each natural frequency different frequency. first, in order to solve problem, we control ratio of fuel and air. that is, Keep away resonance. second, in order to changing natural frequency of Combustion Chamber, We changed the shape of Economizer.

  • PDF