• Title/Summary/Keyword: 연료분사율

Search Result 132, Processing Time 0.027 seconds

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Characteristics of the Spray Development with Diesel Fuel Temperatures (디젤 연료 온도에 따른 분무 발달 특성)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • The characteristics of the fuel quantity, injection rate and macro spray development was investigated under a range of diesel fuel temperatures. The actual injection quantity decreased despite the same signal of the injection start and injection duration as the fuel temperature decreased. The injection rate measurements confirmed that the actual injection commencement was delayed and the actual injection duration was shortened under lower fuel temperature conditions, which explains why the injection quantity decreased. Spray tip penetration with a lower fuel temperature was longer than that with a higher fuel temperature due to the deteriorated atomization. As a pre-test for the combustion experiment under low temperature conditions, piston targeting with pilot injection was accomplished, which showed that the fuel droplet from pilot injection was introduced into the crevice area. This suggests that the pilot injection quantity and timing should be chosen with careful consideration for actual applications.

An Analytical Study on Characteristics of a Diesel Injection System (디젤분사계의 특성에 관한 해석적 연구)

  • 장영준;박호준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.63-74
    • /
    • 1989
  • It is well-known that the fuel injection system if a diesel engine has taken a more important place in understanding of diesel combustion process with combustion chamber. But a diesel fuel injection system has an assembly of many complex and intricate problems such as the desired rate of injection, secondary injection and injection pump etc., in addition to the atomization for ignition and combustion, the penetration and diestribution for proper utilization of air. The analysis is carried out by simplifing and modeling the injection phenomena and dividing into three parts comprising of fuel injection pump, high pressure pipe and fuel injection nozzle. The purpose of this paper is to describe an analytical simulation of the injection system and to speed up the work of developing injection systems for new engines. The effects of important injection parameters as predicted by the present model are found to be in good agreement with experiment. It can be seen that there is an optimal pipe diameter for maximum quantity injected.

  • PDF

Effects of pilot injection timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with Bio-diesel blended fuel (바이오디젤 혼합 연료에 커먼레일 디젤기관에서 예비 분사시기가 연소 및 배기 특성에 미치는 영향)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2573-2578
    • /
    • 2014
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine using bio-diesel blended fuel. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with fuel of bio-diesel blended rate 20%. In these experimental results, IMEP was shown maximum pressure at pilot injection timing BTDC$10^{\circ}$ combustion pressure and heat release rate were decreased in proportion to increase of EGR rate under the same pilot injection timing conditions. The NOx emission was decreased with increasing the EGR rate without influence on pilot injection timing. However, soot emission was reduced to a minimum at pilot injection timing BTDC$20^{\circ}$.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • The flow of combustor in scramjet engine has supersonic speed so that the residence time and mixing ratio are very important factors for the efficient combustion. This study used open cavity(L/D=4.8) as a fuel/air mixing model. Laser schlieren visualization and pressure measurement were carried out to observe the flow characteristics around a jet orifice and a cavity at the time of fuel injection. As a result of 10ns laser schlieren, unsteady flow which was around the cavity could be observed effectively. Pressure was measured that momentum flux ratio(J) was changed. And the change of critical ignition point could be observed by the momentum flux ratio changed.

Study on Development of High-Speed Small Engine Controlled by EFI (Electronic Fuel Injection) (소형 고속 전자제어 연료분사 엔진 개발에 관한 연구)

  • Lee Seungjin;Ryu Jeongin;Choi Kyonam;Jeong Dongsoo
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.173-179
    • /
    • 2005
  • Fuel injection system has more benefits in power, fuel consumption and emission than carburetor system even in high speed small engine. Up to date fuel injection system is used in motor car but is not used in motorcycles in Korea. EFI (Electronic fuel injection) system which has ECU can control precise fuel supply to variable RPM in engine. The purpose of this study is the investigation of effects of fuel injection system to improve the engine performance and efficiency in variable revolution of high speed small engine which is 4 Valves SOHC single cylinder engine used in motorcycle.

Feeding Rate Measurement of Pintle Injector Type Fuel Feeder for Metal Powder Combustor (금속분말 연소기를 위한 핀틀인젝터형 연료 공급 장치의 입자 분사량 측정)

  • Ko, Tae-Ho;Kim, Hyung-Min;Lee, Do-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.405-409
    • /
    • 2010
  • 금속분말을 청정 에너지원으로 이용하기 위해 금속분말 소형 연소기의 구현이 필요하다. 이를 위한 선행연구로 연료 공급 시스템인 핀틀인젝터형(pintle injector type) 금속분말 공급장치의 중요 성능인 분사량을 실험적으로 측정하였다. 분사량 측정 시험에 앞서 간단한 금속분말 공급 시험으로 확인된 문제점을 장치의 변경을 통해 해결하였다. 측정 시험의 결과, 연료 공급 장치에 이송 가스 압력이 상승함에 따라 많은 질유량의 금속분말이 분사되었고 압력에 따른 정량적 분사량을 확인하였다. 이송 가스와 금속분말의 혼합 성능을 개선하여 균일한 분사를 하고자 이송 가스를 25 Hz로 가진 하여 공급하였고 가진이 없는 경우의 실험결과와 비교하였다.

  • PDF

Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine (가솔린기관의 연료분사 시기가 기관성능에 미치는 영향)

  • 조규상;정연종;김원배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

Fuel Injection Strategy for Optimized Performance in Heavy-Duty Diesel Engine (대형 디젤 엔진에서 최적 성능 도출을 위한 연료 분사 전략에 관한 연구)

  • Lee, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • The improvement of emissions, fuel economy, and combustion noise is a primary target in the development of heavy-duty diesel engines. Multiple injection has been introduced as one of the most promising strategies for this goal. In this research, various multiple injection methods were applied to achieve the optimal strategy in terms of emissions, fuel economy, and combustion noise. In the case of one pilot injection, the smoke emission deteriorated, while the NOx emission was reduced. In the case of 2 pilot injections, the NOx and smoke emissions were reduced by 73% and 84%, respectively. In this case, the combustion noise was analyzed with the maximum pressure-rise rate, and the fuel economy was evaluated with the help of the indicated specific fuel consumption. A 15%:15% 2-pilot injection strategy accomplished improvements of 32.9% for NOx, 60.4% for smoke, 1.95% for fuel consumption, and 19.4% for combustion noise compared to the case of single injection. Based on the data, an optimal injection strategy will be developed for a greater operating range in future work.