• Title/Summary/Keyword: 연료봉다발

Search Result 23, Processing Time 0.029 seconds

Experiment of Turbulent Heat Transfer Performance Enhancement in Rod Bundle Subchannel by the Large Scale Vortex Flow (대형 2차 와류에 의한 봉다발 부수로에서의 난류 열전달 향상에 관한 실험적 연구)

  • Seo, Kwi-Hyun;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1592-1597
    • /
    • 2004
  • Experimental studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel rod bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Experimental studies were carried out at Reynolds Number 60,000 with hydraulic condition. Normal variations of mean velocity and turbulent intensity in the rod bundle subchannel were measured by the 2-color LDV measurement system. The turbulence generated by split mixing vanes has small length scales so that they maintain only about 10DH after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up $25D_{H}$ after the spacer grid.

  • PDF

Turbulent Heat Transfer with Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 혼합날개에 의한 난류열전달 해석)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • The purpose of present work is to analyze the convective heat transfer downstream of mixing vane in subchannel of nuclear reactor with three-dimensional Navier-Stokes equations. SST model is selected as a turbulence closure by comparing the performances of two different turbulent closures. Three different shapes of mixing vane are tested. And, thermal-hydraulic performances of these vanes are discussed. The results show that twist of the vane improves the heat transfer performance far downstream of the vane.

Experimental measurements on Single-Phase Local heat transfer coefficients in $6{\times}6$ rod bundles with LSVF mixing vanes (LSVF 혼합날개를 이용한 $6{\times}6$ 연료봉 다발에서의 단상 국부적 열전달계수의 실험적 측정)

  • Bae, Kyenug-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.300-305
    • /
    • 2005
  • The present experimental study investigates single-phase heat transfer coefficients downstream of support grid in $6{\times}6$ rod bundles. Support grid with split mixing vanes enhance heat transfer in rod bundles by generating it make turbulence. But this turbulence is confined to short distance. Support grid with LSVF mixing vanes enhanced heat transfer to longer distance. The corresponding Reynolds number investigated in the present study is Re=30,000. The heat transfer coefficients are measured using heated and unheated copper sensor.

  • PDF

Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 비틀린 혼합날개의 형상최적설계)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

SHAPE OPTIMIZATION OF A Y-MIXING VANE IN NUCLEAR FUEL ASSEMBLY (핵연료 봉다발내 Y 혼합날개의 형상최적설계)

  • Jung, S.H.;Kim, K.Y.;Kim, K.H.;Park, S.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane taken tolerance into consideration by using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of pressure drop. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

Theoretical Estimation of the Impact Velocity during the PWR Spent Fuel Drop in Water Condition (경수로 사용후핵연료 수중 낙하 충돌 속도의 이론적 평가)

  • Kwon, Oh Joon;Park, Nam Gyu;Lee, Seong Ki;Kim, Jae Ik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the $3{\times}3$ short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

Experimental Measurement of the Thermal-hydraulic Characteristics of subchannels in $6{\times}6$ rod bundles using LSVF mixing vanes (LSVF 혼합날개를 이용한 $6{\times}6$ 봉다발의 부수로에서의 열수력적 특성에 관한 실험적 측정)

  • Seo, Jeong-Sik;Bae, Kyoung-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.188-193
    • /
    • 2006
  • In present study, the thermal-hydraulic characteristics of the subchannels are investigated as measuring single-phase heat transfer coefficients and the cross sectional velocity field using LDV in the downstream of support grid in $6{\times}6$ rod bundles. Support grid with mixing vanes make enhancing heat transfer in rod bundles by generating turbulent flow. But this turbulent flow only is reserved in a short distance. Support grid with LSVF mixing vanes keep the turbulent flow a long distance. The experiments are performed at the nominal Reynolds number 30,000 and 50,000. The heat transfer coefficients are measured using heated and unheated copper sensor. In this study, the comparison of local heat transfer coefficients for LSVF mixing vane and split mixing vane is represented.

  • PDF

Numerical Analysis of Flow Distribution Inside a Fuel Assembly with Split-Type Mixing Vanes (분할 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.329-337
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane, which is installed at a spacer grid of the fuel assembly, plays an important role in improving convective heat transfer by generating either swirl flow in the subchannels or cross flow between the fuel rod gaps. Therefore, both the geometric configuration and the arrangement pattern of a mixing vane are important factors in determining the performance of a mixing vane. In this study, in order to examine the flow-distribution features inside a $5{\times}5$ fuel assembly with split-type mixing vanes, which was used in the benchmark calculation of the OECD/NEA, we conduct simulations using the commercial computational fluid dynamics software, ANSYS CFX R.14. We compare the predicted results with measured data obtained from the MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, we discuss the effect of the split-type mixing vanes on the flow pattern inside the fuel assembly.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.