• Title/Summary/Keyword: 연료과잉

Search Result 90, Processing Time 0.024 seconds

Spray Characteristics of Gas-centered Swirl Coaxial(GCSC) Injector in High Pressure Condition (고압환경에서의 기체-액체 분사기 분무 특성 연구)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Bae, Tae-Won;Choi, Hwan-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.5-8
    • /
    • 2010
  • The GCSC injectors studied in this paper are those applied to the combustion chamber of staged combustion engines. Liquid fuel is injected through tangential holes along the outer wall of the GCSC injector forming a swirling sheet and oxygen rich gas generated by a preburner enters axially through the center orifice of the injector to form a gaseous jet. The spray characteristics of GCSC injectors under ambient/high pressure conditions and the effect of recess on spray characteristics have been examined in this paper. These results are expected to be used as fundamental data to develop of a staged combustion engine.

  • PDF

Analysis of Fixed Bed Reactor for the synthesis of DME from METHANE (천연가스를 이용한 DME 합성 고정층 촉매 반응기 해석)

  • Yoon En Sup;Lee Shin Beom;Ahn Sung Joon;Cho Byoung Hak;Cho Won Il;Baek Young Soon;Park Dal Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.42-49
    • /
    • 2004
  • We study on and simulate the behavior of one-step fixed bed reactor which synthesize DiMethylEther(DME) from Methane. At last, we know that reaction is decreased in case of excess and no cooling because the temperature of reactor is decreased or increased seriously. Also, we study on optimizing the reactor so that we know the optimized operation condition according to cooling effect, space velocity of reactant and temperature of reactant, etc.

  • PDF

Air-Fuel ratio Control Technology Corresponding to High Heating Value Variation for Aluminum Melting Furnace (알루미늄 용해로의 열량변동대응 공연비제어기술)

  • Lee, Joongsung;You, Hyunseok;Han, Jeongok
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.131-134
    • /
    • 2015
  • 국내 천연가스 열량제도를 현행 표준 열량제 $10,400kcal/Nm^3(43.54MJ/Nm^3)$에서 중간 조정기간을 두고 2012.07.01부터는 최저 $10,100kcal/Nm^3(42.28MJ/Nm^3)$을 유지하고 2015년 이후 $9,800(41.1MJ/Nm^3){\sim}10,600kcal/Nm^3(44.4MJ/Nm^3)$ 열량범위제도로 변경 추진되고 있다. 산업현장에서 열량변동을 측정하여 공연비 제어기술을 개발하고자 60ton Al 용해로에 열량대응기술 개발을 위한 내용으로 열량측정시스템설치 및 열량 값과 연계하여 공연비 제어기술개발연구 내용으로 결과는 다음과 같다. 단순히 표준열량으로 에 맞춰 프로그램된 제어로직에 열량변동에서 검출된 신호를 이용하여 연료보정 값을 추가한 로직을 재구성할 필요가 있다. 이 혀장의 경우는 용탕의 온도가 목표온도 근처까지 올리기가 어려워진 상황으로 주로 공급열량 저열량화에 따른 과잉공기영향으로 온도상승이 어려워 보이며 적절한 공연비로 최적화 되면 이러한 문제가 개선되리라 생각된다.

  • PDF

Performance Characteristics of CNG Engine at Various Compression Ratios (압축비 변경에 따른 CNG기관의 특성 연구)

  • Kim Jin-young;Ha Jong-yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.145-151
    • /
    • 2005
  • Natural gas is one of clean fuels that can replace petroleum-based fuels, because it has low exhaust emission, comparatively high thermal efficiency and abundant deposits. In this addition, owing to high octane number and wide lean flammability limit, it has a strong point to increase the compression ratio. For this reason, the research is being actively executed to increase the generating power and thermal efficiency of the engine by raising the compression ratio through utilization of high octane number relevant to development of CNG engine. In this study, 0.63L single cylinder diesel engine has been used to alter easily compression ratio. Compression ratio has gotten under control by modifying the thickness of gasket between cylinder head and block without major structural modifications. As the result, as compression ratio has increased, generating power and fuel consumption ratio have been improved. As for emission concentration, as compression ratio has increased, THC concentration has been decreased while exhause concentration of NOx increased. In case compression ratio has excessively increased, brake output decrease and cycle variation have been increased. As the result acquired by analyzing brake output, fuel consumption ratio, cycle variation and exhaust, the engine driving condition has acquired $\varepsilon=13$ as the optimal compression ratio in this study.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.

Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene (Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차)

  • Hwang, In-Chan;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Alkyl vinyl ethers such as methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and isobutyl vinyl ether are usually used as industrial solvents and chemical intermediates in the chemical or pharmaceutical industry. Recently, they are popularly used as raw materials for polymer electrolyte membrane fuel cells and as cellulose dyeing assistants. However, very few investigations about process design and operation data were reported for alkyl vinyl ether compounds and there are no data for propyl vinyl ether(PVE) systems as far as we know. In this work, the isothermal VLE data are reported at 333.15 K for the ternary systems of {PVE + ethanol + benzene} by using headspace gas chromatography(HSGC) and these VLE data were correlated using Wilson, NRTL and UNIQUAC equations. The excess volumes($V^E$) and deviations in molar refractivity(${\Delta}R$) data are also reported for the sub binary systems {PVE + ethanol}, {ethanol + benzene} and {PVE + benzene} at 303.15 K. These data were correlated with Redlich-Kister equation. In addition, isoclines of $V^E$ and DR for ternary system {PVE + ethanol + benzene} were also calculated from Radojkovi equation.

Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향)

  • Donggeun Yoo;Sohyeong Oh;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.58-61
    • /
    • 2023
  • The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.

Nonthermal Plasma-assisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion (디젤의 청정연소를 위한 저온 플라즈마 연료개질 및 개질가스의 디젤엔진 첨가에 관한 연구)

  • Kim, Seong-Soo;Chung, Soo-Hyun;Kim, Jin-Gul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.394-401
    • /
    • 2005
  • A nonthermal plasma-assisted fuel reformer was developed and the effects of operating variables on the performance of this reformer were studied. The $H_2$-rich reformed gas from the reformer was injected into a diesel engine under an idle condition and the effects of the amount of injected gas on the NO and soot reduction were investigated. It was found that with increasing electric power consumption, the degree of facility of ignition of the reforming reaction in the reformer could be enhanced. The performance of the reformer including $H_2$ concentration, $H_2$ recovery, and energy conversion was affected only by the O/C mole ratio. This was because the equilibrium reaction temperature was governed by the O/C mole ratio. With increasing O/C mole ratio, the $H_2$ recovery and energy conversion passed through the maximum values of 33.4% and 66%, respectively, at an O/C mole ratio between 1.2 and 1.5. The reason why the $H_2$ recovery and energy conversion increased with increasing O/C mole ratio when the O/C mole ratio was lower than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction occurred more enough with increasing O/C mole ratio in this low O/C mole ratio range and accordingly the reaction temperature increased. Whereas the reason why the $H_2$ recovery and energy conversion decreased with increasing O/C mole ratio when the O/C mole ratio was higher than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction was further advanced and the $H_2$ recovery and energy conversion decreased. As the weight ratio of reformed diesel to total diesel which entered the diesel engine was increased to $18.2{\sim}23.5%$, NO and soot reduction efficiencies increased and reached as values high as 68.5% and 23.5%, respectively.

Study on Pre-treatment of Tropical Crop Oil for Bio-diesel Production (열대작물 오일로부터 바이오디젤 생산을 위한 전처리 공정 연구)

  • Kim, Deogkeun;Park, Jiyeon;Lee, Joonpyo;Park, Soonchul;Lee, Jinsuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.249.2-249.2
    • /
    • 2010
  • 최근의 고유가와 환경오염에 대한 대응 수단으로 수송용 바이오연료의 보급에 대한 관심이 세계적으로 높아지고 있다. 이 중 바이오디젤은 동식물성 기름으로부터 메탄올과의 전이에스테르화 반응에 의해 생산되는 경유대체 연료로서 환경 친화성과 지속가능성이 인정됨에 따라 그 생산량이 급격히 증가하고 있다. 바이오디젤의 생산량이 증가함에 따라 대두유, 유채유, 팜유 등의 원료유 가격 상승 및 수급 불안정 문제가 대두되고 있으며 식량자원과의 충돌 문제도 발생되고 있다. 이를 해결하기 위한 방안으로 유리지방산 함량이 높은 저가유지 자원(폐식용유, 폐돈지, 폐우지, soapstock, trapped grease)을 이용한 공정 개발 연구가 활발히 진행되고 있다. 본 연구에서는 비활용되고 있는 해외 열대작물 열매씨앗에서 착유한 식물성 오일의 바이오디젤 원료유로서의 사용 가능성을 검토하였다. 열대작물 오일의 물성 분석 결과 고형물, 수분, 인, 유리지방산 함량이 대두원유보다 매우 높게 나타났다. 오일 중의 인지질은 바이오디젤 제조 반응후 에스테르와 글리세린의 층분리를 방해하여 공정 효율을 감소시키고 유리지방산은 염기촉매와 결합하여 지방산염을 생성해 생산수율을 감소시키는 문제를 일으킨다. 고형물과 수분은 여과와 감압증발에 의해 쉽게 제거가 가능하였다. 15~20%의 유리지방산 함유 열대작물 오일의 전처리를 위해 균질계 산촉매와 비균질 고체 산촉매를 이용해 에스테르화 반응 효율을 조사한 결과 황산이 가장 높은 효율을 보였다. 반응표면분석법(Response Surface Method, RSM)을 적용해 메탄올과 촉매량의 2변수 에스테르화반응 최적화를 수행한 결과 메탄올 26%, 촉매 0.98%로 최적 조건이 도출되었으며 초기 산가 33mgKOH/g에서 0.98mgKOH/g으로 감소됨을 확인하였다. 전처리 정제한 오일의 물성분석 결과 고형물 0.1%, 수분 0.10%, 산가 1.0mgKOH/g, 인함량 20ppm 이하로 바람직한 원료유가 생산됨을 알 수 있었다. 제조된 원료유를 이용해 전이에스테르화 반응 최적화 실험을 RSM에 근거하여 진행한 결과 KOH 0.8%, 메탄올:오일 몰비 6.2:1, 반응온도 $60^{\circ}C$, 교반속도 200rpm, 반응시간 30분으로 나타났으며 증류 정제전 97.3%, 증류후 100.0%의 바이오디젤을 생산 할 수 있었다. 열대작물 오일의 전처리 공정은 메탄올을 과잉양으로 사용함으로 효과적인 알콜 회수 공정이 중요하다. 전처리 후 층분리를 통해 회수되는 메탄올 중의 수분함량은 2%~7%로서 이를 전처리 반응에 재사용하기 위해서는 0.3%이하의 수분함량으로 정제가 필요하다. 본 연구에서는 고가의 증류탑 형태가 아닌 단증류방식으로 2단계 내지 3단계로 0.3% 수분의 메탄올 회수 조건을 도출하였으며 파일롯 공정 설계를 진행하고 있다. 이로서 본 연구의 열대작물 오일은 저가로 충분한 물량의 확보가 가능하다면 바이오디젤 원료 자원으로서 큰 활용가치가 있는 것으로 판단된다.

  • PDF

Review of property and utilization of oil crop for biodiesel (바이오디젤 원료작물의 기름 및 지방산 특성에 따른 활용방안 고찰)

  • Jang, Young-Seok;Kim, Kwang-Soo;Lee, Yong-Hwa;Cho, Hyeon-Jun;Suh, Sae-Jung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.25-46
    • /
    • 2010
  • The demand for fuel and energy resources continues to grow due to increased consumption and emerging economies in all parts of the world. With this increase in demand, crude oil prices in the international market has jumped dramatically. Global warming, which is a consequence of increasing greenhouse gas (GHG) emissions, has become scientific, social, and political concerns. To cope with global warming and energy crisis, cost-competitive biofuels are urgently needed. In addition, development of an infrastructure, which supplies energy stably and diversifies energy resources, as well as new cost-saving technologies should be developed to reduce the costs of producing biofuels. Due to high oleic acid content, rapeseed (Brassica napus L.) is currently the potential feedstock for biodiesel production in temperate zone region and the production and use of rapeseed oil is already commercialized in Europe. In Korea double-cropping (rice and rapeseed) became more prevalent because it reduces competitions from land constraints. Production of rapeseed as a biodiesel feedstock may reduce the influence of rising oil prices and nation's dependence on imported petroleum and increase job opportunities and farm incomes.