• Title/Summary/Keyword: 연구분야분류

Search Result 2,486, Processing Time 0.03 seconds

History of Biology Education in Korea During the Periord of 1880-1945 (1880-1945 년간의 한국 생물교육의 역사)

  • 김훈수
    • Animal Systematics, Evolution and Diversity
    • /
    • v.10 no.1
    • /
    • pp.97-123
    • /
    • 1994
  • The author devided th period of 1876-1945 into three epochs ; the Opening of Ports in 1876 -before the Political Reform in 1894 , the Political Reform- the Japanese annexation of Korea in 1910 , and the Epoch of Japanese Colony during 1910-1945. As civilization through including educational reform rised. The modern school system began to be introduced nongovernmentally and governmentally to Korea in the 1880's without any school laws. Were chronologycally established school regulation by Korea Government in 1895-1893, school laws by Korean Government under the supervision of the Japanese Residency-General of Korea in 1906-1910, and the educational laws of Korea by the Japanese Government-General of Korea in 1911-1943. In these epochs, the numbers of elementary , secondary and higher educational institutions and the numbers of pupils and students had increased slowly. Japanese had developed sonwhat primary education and secondary technical education, but it had checked extremely the Korean peoples to receive secondary liberal education and higher education, On the epoch of Japanese colony, Japanese occupied nearly half of elementary school teachers, almost of public secondary school teachers educated in Japan, and nearly all of professor educated in Japan in public and national colleges which were technical, and in one imperial university . Forty or more Korean teachers taught natural history chief at private secondary schools for Koreans , more than half of them being graduates of colleges of agriculture and forestry in Korea and Japan. The author mentioned curricula , and subjects and textbooks connected with biology of elementary, secondary and higher educational institutions. The pup8ls and students received biological knowledge through learning sciences at primary schools ; natural history (plants, animals and minerals ) at secondary schools including normal schools ; botany, zoology, genetics and major subjects related with biology such as anatomy, physiology, bacteriology, pland breeding at medical colleges and colleges of agriculture and forestry. There were no departments of biology , botany or zoology in Korea. Only seven Koreas graduated from departments of biology, botany or zoology at imperial universities in Japan. Some of them played the leading parts to develop education and researches of biology in the universities after 1945 Liberation.

  • PDF

Development of Nutrition Quotient for Korean adults: item selection and validation of factor structure (한국 성인을 위한 영양지수 개발과 타당도 검증)

  • Lee, Jung-Sug;Kim, Hye-Young;Hwang, Ji-Yun;Kwon, Sehyug;Chung, Hae Rang;Kwak, Tong-Kyung;Kang, Myung-Hee;Choi, Young-Sun
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.340-356
    • /
    • 2018
  • Purpose: This study was conducted to develop a nutrition quotient (NQ) to assess overall dietary quality and food behaviors of Korean adults. Methods: The NQ was developed in three steps: item generation, item reduction, and validation. Candidate items of the NQ checklist were derived from a systematic literature review, expert in-depth interviews, statistical analyses of the Korea National Health and Nutrition Examination Survey (2010 ~ 2013) data, and national nutrition policies and recommendations. A total of 368 adults (19 ~ 64 years) participated in a one-day dietary record survey and responded to 43 items in the food behavior checklist. Pearson's correlation coefficients between responses to the checklist items and nutritional intake status of the adults were calculated. Item reduction was performed, and 24 items were selected for a nationwide survey. A total of 1,053 nationwide adult subjects completed the checklist questionnaires. Exploratory and confirmatory factor analyses were performed to develop a final NQ model. Results: The 21 checklist items were used as final items for NQ. Checklist items were composed of four factors: nutrition balance (seven items), food diversity (three items), moderation for the amount of food intake (six items), and dietary behavior (five items). The four-factor structure accounted for 41.8% of the total variance. Indicator tests of the NQ model suggested an adequate model fit (GRI = 0.9693, adjusted GFI = 0.9617, RMR = 0.0054, SRMR = 0.0897, p < 0.05), and item loadings were significant for all subscales. Standardized path coefficients were used as weights of the items. The NQ and four-factor scores were calculated according to the obtained weights of the questionnaire items. Conclusion: NQ for adults would be a useful tool for assessing adult dietary quality and food behavior. Further investigations of adult NQ are needed to reflect changes in their food behavior, environment, and prevalence of chronic diseases.

A Comparison of Conventional Cytology and ThinPrep Cytology of Bronchial Washing Fluid in the Diagnosis of Lung Cancer (폐암의 진단 검사 중 기관지 세척액에서 ThinPrep검사법과 기존의 세포검사법의 유용성에 대한 비교)

  • Kim, Sang-Hoon;Kim, Eun Kyung;Shi, Kyeh-Dong;Kim, Jung-Hyun;Kim, Kyung Soo;Yoo, Jeong-Hwan;Kim, Joo-Young;Kim, Gwang-Il;Ahn, Hee-Jung;Lee, Ji-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.6
    • /
    • pp.523-530
    • /
    • 2007
  • Background: A ThinPrep$^{(R)}$ Processor was developed to overcome the limitations of conventional cytology and is widely used to diagnose various cancers. This study compared the diagnostic efficacy of conventional cytology for lung cancer with that of the ThinPrep$^{(R)}$ cytology using the bronchial washing fluid. Methods: The bronchial washing fluid of 790 patients from Jan. 2002 to Dec. 2006, who were suspected of gaving a lung malignancy, was evaluated. Both ThinPrep$^{(R)}$ and conventional cytology were performed for all specimens. Result: Four hundred forty-six men and 344 women were enrolled in this study, and 197 of them were diagnosed with cancer from either a bronchoscopic biopsy or a percutaneous needle aspiration biopsy. ThinPrep$^{(R)}$ cytology showed a sensitivity, specificity, positive predictive value, negative predictive value and false negative error rate of 71.1%, 98.0%, 92.1%, 91.1%, 8.9%, respectively. The conventional cytology showed sensitivity, specificity, positive predictive value, nagative predictive value and false negative error rate of 57.9%, 98.0%, 90.5%, 87.5%, 12.5%, respectively. For central lesions, the sensitivity of conventional cytology and ThinPrep$^{(R)}$ were 70.1% and 82.8%, respectively. Conclusion: ThinPrep$^{(R)}$ cytology showed a higher sensitivity and lower false negative error rate than conventional cytology. This result was unaffected by the histological classification of lung cancer. Therefore, ThinPrep$^{(R)}$ cytology appears to be a useful method for increasing the detection rate of lung cancer in bronchial washing cytology test.

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

Analysis of Research Trends in Journal of Distribution Science (유통과학연구의 연구 동향 분석 : 창간호부터 제8권 제3호까지를 중심으로)

  • Kim, Young-Min;Kim, Young-Ei;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.8 no.4
    • /
    • pp.5-15
    • /
    • 2010
  • This study investigated research trends of JDS that KODISA published and gave implications to elevate quality of scholarly journals. In other words, the study classified scientific system of distribution area to investigate research trends and to compare it with other scholarly journals of distribution and to give implications for higher level of JDS. KODISA published JDS Vol.1 No.1 for the first time in 1999 followed by Vol.8 No.3 in September 2010 to show 109 theses in total. KODISA investigated subjects, research institutions, number of participants, methodology, frequency of theses in both the Korean language and English, frequency of participation of not only the Koreans but also foreigners and use of references, etc. And, the study investigated JDR of KODIA, JKDM(The Journal of Korean Distribution & Management) and JDA that researched distribution, so that it found out development ways. To investigate research trends of JDS that KODISA publishes, main category was made based on the national science and technology standard classification system of MEST (Ministry Of Education, Science And Technology), table of classification of research areas of NRF(National Research Foundation of Korea), research classification system of both KOREADIMA and KLRA(Korea Logistics Research Association) and distribution science and others that KODISA is looking for, and distribution economy area was divided into general distribution, distribution economy, distribution, distribution information and others, and distribution management was divided into distribution management, marketing, MD and purchasing, consumer behavior and others. The findings were as follow: Firstly, main category occupied 47 theses (43.1%) of distribution economy and 62 theses (56.9%) of distribution management among 109 theses in total. Active research area of distribution economy consisted of 14 theses (12.8%) of distribution information and 9 theses (8.3%) of distribution economy to research distribution as well as distribution information positively every year. The distribution management consisted of 25 theses (22.9%) of distribution management and 20 theses (18.3%) of marketing, These days, research on distribution management, marketing, distribution, distribution information and others is increasing. Secondly, researchers published theses as follow: 55 theses (50.5%) by professor by himself or herself, 12 theses (11.0%) of joint research by professors and businesses, Professors/students published 9 theses (8.3%) followed by 5 theses (4.6%) of researchers, 5 theses (4.6%) of businesses, 4 theses (3.7%) of professors, researchers and businesses and 2 theses (1.8%) of students. Professors published theses less, while businesses, research institutions and graduate school students did more continuously. The number of researchers occupied single researcher (43 theses, 39.5%), two researchers (42 theses, 38.5%) and three researchers or more (24 theses, 22.0%). Thirdly, professors published theses the most at most of areas. Researchers of main category of distribution economy consisted of professors (25 theses, 53.2%), professors and businesses (7 theses, 14.9%), professors and businesses (7 theses, 14.9%), professors and researchers (6 theses, 12.8%) and professors and students (3 theses, 6.3%). And, researchers of main category of distribution management consisted of professors (30 theses, 48.4%), professors and businesses (10 theses, 16.1%), and professors and researchers as well as professors and students (6 theses, 9.7%). Researchers of distribution management consisted of professors, professors and businesses, professors and researchers, researchers and businesses, etc to have various types. Professors mainly researched marketing, MD and purchasing, and consumer behavior, etc to demand active participation of businesses and researchers. Fourthly, research methodology was: Literature research occupied 45 theses (41.3%) the most followed by empirical research based on questionnaire survey (44 theses, 40.4%). General distribution, distribution economy, distribution and distribution management, etc mostly adopted literature research, while marketing did empirical research based on questionnaire survey the most. Fifthly, theses in the Korean language occupied 92.7% (101 theses), while those in English did 7.3% (8 theses). No more than one thesis in English was published until 2006, and 7 theses (11.9%) were published after 2007 to increase. The theses in English were published more to be affirmative. Foreigner researcher published one thesis (0.9%) and both Korean researchers and foreigner researchers jointly published two theses (1.8%) to have very much low participation of foreigner researchers. Sixthly, one thesis of JDS had 27.5 references in average that consisted of 11.1 local references and 16.4 foreign references. And, cited times was 0.4 thesis in average to be low. The distribution economy cited 24.2 references in average (9.4 local references and 14.8 foreign references and JDS had 0.6 cited reference. The distribution management had 30.0 references in average (12.1 local references and 17.9 foreign references) and had 0.3 reference of JDS itself. Seventhly, similar type of scholarly journal had theses in the Korean language and English: JDR( Journal of Distribution Research) of KODIA(Korea Distribution Association) published 92 theses in the Korean language (96.8%) and 3 theses in English (3.2%), that is to say, 95 theses in total. JKDM of KOREADIMA published 132 theses in total that consisted of 93 theses in the Korean language (70.5%) and 39 theses in English (29.5%). Since 2008, JKDM has published scholarly journal in English one time every year. JDS published 52 theses in the Korean language (88.1%) and 7 theses in English (11.9%), that is to say, 59 theses in total. Sixthly, similar type of scholarly journals and research methodology were: JDR's research methodology had 65 empirical researches based on questionnaire survey (68.4%), followed by 17 literature researches (17.9%) and 11 quantitative analyses (11.6%). JKDM made use of various kinds of research methodologies to have 60 questionnaire surveys (45.5%), followed by 40 literature researches (30.3%), 21 quantitative analyses (15.9%), 6 system analyses (4.5%) and 5 case studies (3.8%). And, JDS made use of 30 questionnaire surveys (50.8%), followed by 15 literature researches (25.4%), 7 case studies (11.9%) and 6 quantitative analyses (10.2%). Ninthly, similar types of scholarly journals and Korean researchers and foreigner researchers were: JDR published 93 theses (97.8%) by Korean researchers except for 1 thesis by foreigner researcher and 1 thesis by joint research of the Korean researchers and foreigner researchers. And, JKDM had no foreigner research and 13 theses (9.8%) by joint research of the Korean researchers and foreigner researchers to have more foreigner researchers as well as researchers in foreign countries than similar types of scholarly journals had. And, JDS published 56 theses (94.9%) of the Korean researchers, one thesis (1.7%) of foreigner researcher only, and 2 theses (3.4%) of joint research of both the Koreans and foreigners. Tenthly, similar type of scholarly journals and reference had citation: JDR had 42.5 literatures in average that consisted of 10.9 local literatures (25.7%) and 31.6 foreign literatures (74.3%), and cited times accounted for 1.1 thesis to decrease. JKDM cited 10.5 Korean literatures (36.3%) and 18.4 foreign literatures (63.7%), and number of self-cited literature was no more than 1.1. Number of cited times accounted for 2.9 literatures in 2008 and then decreased continuously since then. JDS cited 26,8 references in average that consisted of 10.9 local references (40.7%) and 15.9 foreign references (59.3%), and number of self-cited accounted for 0.2 reference until 2009, and it increased to be 2.1 references in 2010. The author gives implications based on JDS research trends and investigation on similar type of scholarly journals as follow: Firstly, JDS shall actively invite foreign contributors to prepare for SSCI. Secondly, ratio of theses in English shall increase greatly. Thirdly, various kinds of research methodology shall be accepted to elevate quality of scholarly journals. Fourthly, to increase cited times, Google and other web retrievals shall be reinforced to supply scholarly journals to foreign countries more. Local scholarly journals can be worldwide scholarly journal enough to be acknowledged even in foreign countries by improving the implications above.

  • PDF

The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining (데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석)

  • Lee, Su Hyun;Park, Jung Min;Lee, Hyoung Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.111-131
    • /
    • 2015
  • There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms. In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern. This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms' distress prediction in the future.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.