Proceedings of the Korean Society for Quality Management Conference
/
2006.04a
/
pp.506-512
/
2006
다양한 아파트 특성들을 이용하여 아파트 가격을 추정하고 예측하는 연구 또한 많이 존재하고 있는 실정이다. 그렇지만 이러한 연구들 대부분이 회귀모형에 지나치게 의존하고 있는 실정이다 그러나 회귀모형은 단점보다 장점이 많은 모형이다. 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점들을 극복하고 회귀모형과 상호보완적인 모형을 도입할 필요성에 의해서 본 연구를 수행한 것이다. 다양한 아파트 특성들에 대하여 신경망모형을 이용하여 아파트 가격을 예측하고, 기존의 회귀모형과 비교하는 것이 본 연구의 주목적이다 또한 회귀모형과 신경망모형의 상호 보완적인 측면을 규명하는 것은 본 연구의 부차적인 목적이 된다 아파트 특성들은 주변에서 쉽게 이용 가능한 데이터를 위주로 하였다. 2004년 6월 기준으로 서울시 송파구와 도봉구의 아파트 매매가격들과 12개의 아파트 특성들을 수집하였다. 아파트 매매가격들 (즉, 매매 하한가, 일반 거래가, 매매 상한가) 을 새로운 측정방법을 이용하여 하나의 매매가격으로 추정하였으며, 대표성을 가지도록 하였다. 신경망모형을 도입하여 아파트 특성들을 이용하여 아파트 가격을 정밀하고 유효하게 예측하고, 기존의 회귀모형들과 비교하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다 하겠다. 그리고 주택에 관한 기존의 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
The Journal of Information Technology and Database
/
v.2
no.2
/
pp.35-54
/
1995
회계시스템에 데이타베이스시스템을 도입하는 연구의 주류는 데이타베이스 분야에서 개발된 데이타모형(data mood)을 이용한 회계 데이타모형의 개발에 있었다. 본 연구의 목적은 데이타베이스 분야에서 최근 개발되어 널리 보급되고 있는 객체지향 데이타모형을 적용한 회계 데이타모형(Object-oriented Accounting Data Model; OADM)을 개발하고 응용하는 데 있다. OADM은 회계시스템의 정보제공능력 제고 및 시스템통합의 과제를 해결하는 데 유용한 도구가 될 것이다. OADM은 데이타모형 관점에서 규명된 전통적 회계시스템의 본질을 모형화의 배경으로, REA 모델을 모형화의 기초로, 그리고 객체지향 데이타모형을 모형화의 도구로하여 개발된다. 회계 데이타모형화에 있어서 복합적인 회계데이타의 표현, 복합적이고 까다로운 회계처리절차의 데이타화, 타부문과의 연계, 회계시스템의 변경 및 확장 등의 제 문제점은 기존의 데이타모형으로는 해결하기가 어려우나 객체지향 데이타모형을 회계 데이타모형화에 도입함으로써 이러한 문제점을 해결할 수 있다. 본 연구와 관련한 후행 연구로는 활동중심 원가계산의 모형화, 예산시스템의 모형화 그리고 사무정보시스템의 모형화 등을 들 수 있다. OADM은 이러한 모형화의 기초로 이용될 수 있다. 모형의 실증분석도 가치 있는 미래연구로 본다.
Kim, Boram;Kim, Hyung-Jun;Kim, Sooyoung;Yoon, Kwang Seok
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.346-346
/
2022
본 연구에서는 GPU(Graphic Processing Unit) 가속 분포형모형을 실제 유역에 적용하여 강우 유출모의 결과의 정확성과 모의시간의 효율성에 대한 분석을 수행하였다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되어 있으며, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 모형은 CUDA(Compute Unified Device Architecture) 포트란(Fortran)을 사용하여 개발된 모형으로 수치모의시 연산시간 단축을 고려한 모형이다. 모형의 정확성과 효율성은 미호천 유역에서 발생하는 강우유출현상에 GPU 가속 운동파모형을 적용하여 분석하였다. 수치모의 결과값은 대상유역에 속한 수위관측소의 관측값과 비교하여 정확성을 검증하였고, 수치모의 소요시간은 CPU(Central Processing Unit) 기반 운동파모형의 수치모의 소요시간과 비교하여 효율성을 검증하였다. GPU 가속 운동파모형의 수치모의 결과는 관측값과 유사한 결과를 나타냈으며, 수치모의 소요시간은 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.
각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.
파랑의 전파와 변형에 대한 연구에는 수심방향으로 적분한 2차원방정식인 완경사방정식과 Boussinesq 방정식을 기반으로 한 수치모형을 이용한 연구가 최근까지 가장 활발하게 진행되어 오고 있다. 그러나 실제 구조물의 설계에는 2차원 수치모형에서 고려할 수 없는 수심방향 유속에 기인한 정확도의 문제로 인해 구조물의 형상과 재원을 설계하기 위한 정교한 수치모형실험이 어려워 주로 수리모형실험에 의존해 왔다. 수리모형실험은 실제 현상을 가장 잘 재현해낼 수 있어 신뢰성이 매우 높지만 다양한 실험을 수행하기가 어렵고 많은 시간과 비용이 소요되는 단점이 있다. 이에 따라 최근 수심방향으로 완전한 운동방정식인 Navier-Stokes 방정식을 푸는 3차원 수치모형에 대한 연구가 활발히 진행되고 있다. 이론적으로 매우 우수한 모형이긴 하나 정확도 높은 결과를 얻기 위해서는 매우 조밀한 격자를 필요로 하기 때문에 아직까지 막대한 계산시간이 필요하다는 단점이 있으나 컴퓨터 기술이 급격한 속도로 발전하고 있어 Navier-Stokes 방정식 모형의 적용 가능성은 계속 높아지고 있다. 파랑변형을 다루는 수치모형실험을 수행할 때 외부조파를 사용할 경우 구조물이나 지형에 의해 반사되어 나온 파랑이 조파지점에 도달할 때 실험영역으로 재 반사되는 문제가 발생한다. 이를 해결하기 위해 내부조파기법의 개발에 대한 연구가 필수적이었으며, 자유수면변위를 변수로 사용하는 모형의 경우 그 연구가 매우 활발하게 진행되어 왔다. 한편, Navier-Stokes 방정식 모형의 경우 자유수면변위를 변수로 사용하는 2차원 모형에 비해 상대적으로 연구가 미흡하였다. 본 연구에서는 기존의 연직 2차원 Navier-Stokes 방정식 모형에 사용된 연속방정식에 질량 원천항을 추가하는 내부조파기법을 도입하여 3차원 수치모형에서 고립파를 내부조파하고, 급경사에서의 고립파의 처오름 및 처내림 현상을 수리모형 실험결과와 비교 및 분석하였다. 수치모형은 Navier-Stokes 방정식을 엇갈림 격자체계에서 계산하는 동수압 모형으로서, Two-step projection 기법을 사용하는 유한차분모형을 사용하였다. 본 수치모형은 난류의 해석을 위해서 상대적으로 큰 에디(eddy)만을 고려하는 SANS(spatially averaged Navier-Stokes) 방정식을 계산하는 LES(large-eddy-simulation) 기반의 수치모형으로, 난류 모델링을 위해 Smagorinsky LES 모형을 사용한다. 또한, 압력장의 계산을 위해 Bi-CGSTAB 기법을 이용하여 Poisson 방정식의 해를 구하였으며, 자유수면 추적을 위하여 2차 정확도의 VOF(volume-of-fluid) 기법을 사용하였다. 수치모형실험이 전체적으로 수리모형실험에서 관측한 파랑의 처오름 및 처내림 현상을 잘 재현하고 있는 것으로 나타났으며, 정량적인 비교를 통해 수치모형의 성능을 검증하였다.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.884-888
/
2005
본 연구에서는 국내 적용되고 있는 여러 유출모형의 특성을 분석하여 도시화 전$\cdot$후 유역의 유출특성을 가장 잘 대변할 수 있는 모형을 선정하여 제시하고자 하였다. 국내의 경우 도시화 전$\cdot$후의 유출모의는 개발전을 자연하천유역으로 간주하여 Clark 모형이 사용되고 있으며, 도시화 후에는 도시하천유역에 주로 이용되고 있는 ILLUDAS 모형을 주로 이용하였으나, 최근 들어서는 도시화 전$\cdot$후 모두 Clark 모형을 적용하거나 도시화 후에는 SWMM모형이 사용되고 있다. 그리고, 과거 국내 주로 도시화 후에 적용되어왔던 ILLUDAS 모형은 미국의 Illinois라는 특정지역을 대상으로 개발된 모형이므로 우리나라의 모든 유역에 적용하는 것은 합리적이지 못하고 배수관망이 수리구조물을 포함하고 있는 경우 정확한 유출랑을 산정한다고 보기는 힘들다. 따라서 최근에는 미국에서 전지역적으로 권장되고, 국내에서도 이미 여러 연구를 통해 도시유출모형에서 다른 모형보다 우수함이 검증된 SWMM 모형의 사용이 증가되고 있다. 그러나, 각 모형마다 사용되는 매개변수와 모의과정의 차이가 있으므로 도시화 전$\cdot$후 다른 유출모형을 사용하는 방법은 도시화로 인한 유출특성의 변화뿐만 아니라 다른 모형의 적용으로 인한 모형적인 차이가 발생할 수 있다. 또한, 자연하천유역의 유출분석을 위해 개발된 Clark 모형은 도시화가 된 이후에 적용하기에는 배수관망과 맨홀 등의 분석이 불가하기 때문에 한계점을 내재하고 있다. 따라서, 도시화 전$\cdot$후의 유출특성의 변화를 정확하게 비교 예측하기 위해서는 서로 다른 모형의 적용으로 인해 발생할 수 있는 문제점 검토가 선행되어야 한다. 본 연구를 궁극적인 목적을 위해 도시유출모형의 자연유역에서의 적용성을 검토를 선행하였다. 자연하천 유역인 설마천 유역에 대해 Clark 모형과 SWMM 모형을 적용하여 비교 검토하였다. 연구결과 SWMM 모형의 자연유역 적용 가능성이 입증되었으며 추후 연구과제인 도시화 전$\cdot$후 유출특성 분석시 하나의 모형을 사용하여 유출모형간에 발생할 수 있는 차이를 제거할 수 있는 가능성을 확인할 수 있었다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.220-226
/
2009
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 널리 이용되어 왔던 신경망모형(Neural Network Model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정밀하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
Proceedings of the Korean Society for Quality Management Conference
/
2010.04a
/
pp.379-385
/
2010
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 멀리 이용되어 왔던 신경망모형 (Neural Network Model)은 입력변수가 불완전하고 변동 폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정말하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
Kim, Boram;Yun, Gwan Seon;Kim, Hyeong-Jun;Yoon, Kwang Seok
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.323-323
/
2020
그래픽 처리 장치(Graphic Processing Unit: GPU)는 그래픽 처리 작업에 특화된 다수의 산술논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 본 연구는 GPU 가속 운동파모형을 실제 유역에 적용하여, GPU 가속 운동파 강우유출모형 결과에 대한 정확성과 연산 소요 시간에 대한 효율성을 확인하였다. GPU 가속 운동파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시키기 위해 CUDA 포트란을 이용하여 개발되었다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되었고, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 운동파모형을 이용하여 금강의 미호천 유역에서 발생하는 강우유출현상을 모의 하였고, 동일한 유한체적법을 이용한 CPU(Central Processing Unit) 기반의 강우유출모형과 비교하였다. 그 결과 GPU 가속모형의 결과는 미호천 유역 하류단에서 관측한 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반의 강우유출모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.
본 연구에서는 실무 및 학계에 종사하는 45명의 전문가 집단을 대상으로 쌍별비교(pairwise comparision)에 의한 설문조사에서 얻어진 전문가들의 의견을 AHP 분석을 통하여 종합하는 과정을 거쳐 부도예측모형을 설계하여 검증한 뒤, LOGIT모형과 비교하였다. 본 연구에 의하면 부도예측모형에서 정량적인 정보보다 정성적인 정보가 더 중요한 역할을 한다는 D.Bunn-G.Wright(1991)의 연구와 일치하는 결과를 얻을 수 있었다. 본 연구에서 발견된 분석결과를 요약하면 다음과 같다. 첫째로 LOGIT 모형과 AHP 모형에서 모두 정량적인 정보만을 고려하는 경우보다 정성적인 정보를 함께 고려한 모형에서 부도예측율이 더 높은 것으로 나타나고 있어 부도가능성을 예측하는데 있어 정성적인 정보가 중요한 역할을 한다는 결론을 얻었다. 둘째로 AHP를 이용한 부도예측 모형을 설계할 때 각 속성에 대한 전문가(45명)들의 의견을 종합하는 방법으로 산술평균과 기하평균을 이용한 검증결과에 의하면 기하평균방법을 통하여 전문가들의 의견을 종합하는 것이 보다 합리적이라는 실증적 증거를 얻을 수 있었다. 셋째로 Akaike의 기준값을 분석한 결과에 의하면 LOGIT 모형은 정량적인 정보와 정성적인 정보를 모두 이용한 모형이 가장 우수한 것으로 판명되었고, 모형의 부도예측력도 가장 높은 것으로 밝혀졌다. AHP 모형은 정성적인 정보만을 이용한 모형에서 가장 높은 부도예측을을 나타내었으며, 기하평균을 이용한 AHP 모형은 LOGIT 모형보다 항상 높은 부도예측율을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.