• Title/Summary/Keyword: 연구모델

Search Result 41,181, Processing Time 0.065 seconds

A Study on the Automated Generation of Arena Simulation Models Using Conceptual Models (개념 모델을 이용한 Arena 시뮬레이션 모델 자동 생성에 관한 연구)

  • Ra, Hyun-Woo;Choi, Seong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • In general, a simulation project requires much time and money since we should develop a model that works similarly to the system at a level consistent with the project purposes. Therefore, more active research studies are required to reduce the time needed for the modeling process. This is achievable by minimizing the possible trial and error during the model development process through the appropriate conceptual model design and the automated generation of the simulation model. This paper presents a tool automatically generating an Arena model after developing a conceptual simulation model. Because our proposed tool is based on the popular Microsoft Excel and Visio, it is expected to be practically used at many industrial sites. Finally, we showed the effectiveness of the newly suggested tool by applying it to an imaginary simulation project.

A method of Feature-Class Transformation using Ontology (Ontology 기반의 Feature-Class 변환 기법)

  • Kim, Dong-Ri;Song, Chee-Yang;Baik, Doo-Kwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.50-54
    • /
    • 2007
  • 소프트웨어 개발을 위한 모델링 방법 중 대표적인 것으로 UML을 이용한 방법이 있으며, 제품계열공학에서 소프트웨어의 재사용을 위한 모델링 방법으로 feature 모델링에 관한 연구가 진행 되고 있다. feature 모델링 방법은 잘 정의된 개발 기법을 제공하여 활용되고 있으나 다소 범용 적이지 않다. 또한 그 구조물이 UML과 상이하여 UML사용자가 feature 모델을 재사용하는 데는 어려움을 가지고 있고, feature 모델에서 class모델로의 변환을 제시한 기존연구는 도메인 전문가에 의해 경험적으로 모델링을 하기 때문에 모호성과 이해의 오류, 그리고 잘못된 해석 등의 문제가 발생 된다. 그리고, feature 모델과 class모델의 모든 요소를 매핑하여 변환하지 않는다는 점에서 완전하지 못하다. 따라서 본 논문에서는 Ontology를 이용하여 의미 기반의 명확한 명세를 통한 feature모델의 class 모델로의 변환기법을 제시하고, 이를 위해 feature 모델과 class 모델의 구조물의 요소를 정의하고 이를 기반으로 feature 모델과 OWL, 그리고 class 모델 속성간의 매핑 규칙을 제시하고, 본 논문에서 제시한 변환 프로세스를 이용하여 사례연구를 하였다.

  • PDF

Spatio-temporal deep learning model for urban drainage network: (2) Improving model's robustness (우수관망 시공간 딥러닝 모델: (2) 모델 강건성 향상을 위한 연구)

  • Yubin An;Soon Ho Kwon;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.228-228
    • /
    • 2023
  • 국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.

  • PDF

A Study on Business Model for Local Electronic Commerce (지역 전자상거래 쇼핑몰을 위한 비즈니스 모델 연구)

  • 이형묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.166-168
    • /
    • 2000
  • 인터넷을 상업적으로 이용하는 하나의 형태로 최근 들어 전자상거래가 주목을 받고 있다. 현재 전자상거래 시장의 급속한 신장세에도 불구하고, BtoC를 기반으로 하는 전자상거래 쇼핑몰의 성장은 기대에 못 미치고 있다. 이러한 상황은 현재의 전자상거래 쇼핑몰 비즈니스 모델에 대한 평가를 통해 차세대 모델로의 질적인 변화를 필요로 하고 있다. 이에 따라 본 연구에서는 기존의 전자상거래 비즈니스 모델인 BtoB와 BtoC를 혼합한 지역 전자상거래 쇼핑몰에 적합한 새로운 형태의 BtoBC 전자상거래 비즈니스 모델을 제시하였다. 제안된 모델을 통하여 소비자와 생산자 사이의 원활한 전자상거래가 가능해질 수 있을 것이다.

  • PDF

Automatic Text Classification Using Hybrid Multiple Model Schemes (하이브리드 다중 모델 학습 기법을 이용한 자동 문서 분류)

  • 명순희;조형근;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.253-255
    • /
    • 2002
  • 본 논문에서는 다중 모델 기계학습 기법을 이용하여 문서 자동 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모텔 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고 한 것들인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과, 본 연구에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.

  • PDF

R&D Quality Impact Analysis of Q-mark Model (Q-mark 모델의 R&D 품질 영향 분석)

  • Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.1
    • /
    • pp.154-161
    • /
    • 2015
  • 본고에서는 Q-mark 모델의 R&D(Research & Development) 품질 영향 분석을 기술한다. 이를 위해 Q-mark 모델 특징과 종류 그리고 절차를 간략히 기술하고, R&D 품질에 대한 Q-mark 인증 모델 영향에 대해 연구현장 설문조사 내용을 바탕으로 연구결과 완성도 측면, 대외 신뢰도 개선을 통한 과제 수주 측면, 기술 이전과 사업화 측면, 그리고 과제관리 효율화 측면 등에서 분석하여 제시한다. 또 앞으로 Q-mark 모델이 보다 객관적이고 효과적인 R&D 품질관리를 위한 인증 모델로 개선되고 지속적으로 운영되기 위해 보완되어야 할 사항에 대해 설문조사 결과를 바탕으로 인증 측면, 프로세스 범주 측면, 제공 템플릿 측면, 그리고 품질 지원 서비스 및 전문성 측면에서 기술한다.

  • PDF

Optimal Hyper Parameter for Korean Face Data Generation with BEGAN (BEGAN을 통해 한국인 얼굴 데이터 생성을 하는데 최적의 HyperParameter)

  • Cho, Kyu Cheol;Kim, San
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.459-460
    • /
    • 2021
  • 본 논문에서는 BEGAN을 활용한 한국인 얼굴 데이터 생성을 위한 최적의 Hyper Parameter를 제안한다. 연구에서는 GAN의 발전된 모델인 BEGAN을 이용한다. 위의 모델을 작성하기 위하여 본 논문에서는 Anaconda 기반의 Jupyter Notebook에서 Python Tensorflow 모델을 작성하여 테스트하고, 만들어진 모델을 FID를 통해 모델의 성능을 비교한다. 본 연구에서는 제안하는 방법들을 통해서 만들어진 모델을 이용해 한국인 얼굴 데이터를 구하고, 생성된 이미지에 대한 정량적인 평가를 진행한다.

  • PDF

Analysis of Chemistry Teachers' Cognitive level related to Two Types of Acid-Base Models based on Epistemological and Ontological viewpoint (인식론 및 존재론적 관점에서 두 유형의 산·염기 모델에 대한 화학 교사들의 인지 수준 분석)

  • Lyu, Eun-Ju;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.267-276
    • /
    • 2020
  • This study analyzed the level of chemistry teachers' cognition related to two types of acid-base models taught in secondary schools. For the purpose, a questionnaire was developed to identify teachers' cognitions based on previous studies that analyzed the 'Ignorance' of each model. The questionnaire consisted of two items, one related to acid and base reactions and one related to acid and base dissociation, which suggested inconsistencies between the two models. The subjects were 15 chemistry teachers, and as a result, teachers' cognitions were analyzed at four levels. The four levels are: if they don't know the two models, if they only understand one model, if they understand the two models, and perceived the 'Ignorance' of one model, and if they understand the two models and perceived the 'Ignorance' of the two models. The largest proportion of teachers understood the two models and perceived the 'Ignorance' of one model. However, the proportion of understanding the two models and perceiving the 'Ignorance' of the two models was very small. Through this, we argued that efforts to increase the level of chemistry teachers' cognition of the model and 'Ignorance' were necessary.

Performance Comparison of Statistics-Based Machine Learning Model for Classification of Technical Documents (기술문서 분류를 위한 통계기반 기계학습 모델 성능비교 및 한계 연구)

  • Kim, Jin-gu;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.393-396
    • /
    • 2022
  • 본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.

Verification of the Domain Specialized Automatic Post Editing Model (도메인 특화 기계번역 사후교정 모델 검증 연구)

  • Moon, Hyeonseok;Park, Chanjun;Seo, Jaehyeong;Eo, Sugyeong;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.3-8
    • /
    • 2021
  • 인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.

  • PDF