본 연구에서는 반복 학습제어 이론을 기초로 하는 하이브리드 신경망 제어기를 제안한다. 신경망으로는 백프로퍼게이션(backpropagation) 신경망을 사용하고, 기존의 반복 학습 제어 이론의 단점을 보안한 제어 알고리즘을 제안한다. 백프로퍼게이션 신경망의 맵핑(mapping)의 특징으로 원하는 목표 패턴에 추종할 수 있는 출력 패턴을 생성하고 반복 학습에 소요되는 학습시간을 줄일 수 있다. 실험결과에서 보듯이 제안된 제어 알고리즘은 목표패턴에 수렴함을 알 수 있다. 제시한 알고리즘은 CD-ROM 드라이브와 같은 광디스크 드라이브류의 초점 제어 등에 응용할 수 있다.
본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제시한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 여러 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 맡은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.
B-ISDN의 전송망으로서 핵심적인 역할을 수행하게 될 SDH망은 재난에 의한 망의 물리적인 손상에도 생존해야 하며, 증가하는 수용에도 유연하게 대처할수 있어야 한다. 생존도를 보장하기 위한 시스템은 다수 개발되었고, 이에 관련된 연구도 활발하게 진행되었으나, 상대적으로 망의 진화방안에 대해서는 연구가 미비한 상태이다. 본 논문에서는 생존도를 고려한 기존의 시스템들의 수요증가에 대한 적합성을 검토하고, 전형적인 진화유형에 대해서 논의하며, 이와 관련된 최적화모형을 도출한다.
에러 역전파 신경망에서 학습속도와 수렴률은 초기 가중의 분포에 따라 크게 영향을 받는다. 본 연구에서는 이를 위하여 비교사 학습 신경망(Hebbian learning rule)을 이용한 새로운 초기 가중치 결정 방법을 제안한다. 또는 비교사 학습 신경망이 에러 역전파 신경망 학습에 적당하도록 은닉층의 각 뉴런과 연결된 가중치의 norm을 이용하여 학습하였다. 시뮬레이션을 통하여 기존 에러 역전파 신경망 학습과 그 성능을 비교한 결과 제안한 초기 가중치 표현이 학습속도와 수렴능력에서 우수함을 나타낸다.
인터넷의 급속한 보급과 공용망을 통한 전자상거래 등의 활용이 늘어나면서 무결성 보장과 보안장치의 필요성이 부각되고 있다. 무결성 보장을 위하여 여러 가지 방법들이 사용되고 있으며 특히 해쉬함수를 이용한 메시지 인증 방법이 다양한 형태로 응용되어 사용되고 있다. 최근 공용망의 보안취약성을 개선하여 사설망과 같은 환경을 구성하기 위해 가상사설망(VPN)의 개념이 제안되었다. 특히 IP계층에서 VPN을 구성하는 표준으로 IETF에서 제안된 IPsec은 암호화와 무결성기능을 포함한 VPN구성 방법으로 최근 활발히 연구되고 있다. 본 논문에서는 IPsec에 따라 실제로 호스트간의 통신 암호화와 해쉬함수를 이용한 무결성 검증 기능을 제공하는 VPN을 구현하였다.
2021년 5월 12일, 미(美) 바이든 행정부는 소프트웨어 공급망 보안 강화를 위한 대통령 행정명령 14028을 발표하였다. 이후 연방정부에 납품하는 핵심 소프트웨어에 대해 SBOM(Software bill of materials) 제출이 의무화됨에 따라, 2021년 하반기부터 소프트웨어 공급망 관리를 위한 다양한 솔루션이 빠르게 개발되고 있다. 하지만 활발한 연구 및 산업화가 이루어지고 있는 글로벌 정세와 달리, 국내 산업은 상대적으로 더딘 실정이다. 이에 따라 본 논문에서는 소프트웨어 공급망 및 SBOM 관리를 제공하고 있는 글로벌 기업과 해당 솔루션에 대해 소개한다. 향후 국내 시장도 소프트웨어 공급망 보안 강화를 위해 SBOM 관리 의무화가 예상되는바 관련 솔루션의 개발 연구가 요구된다.
이 연구는 사회관계망의 형태와 구성원에 관한 정보를 분석하여 모바일로 서비스하는 것에 관한 연구이다. 사람들은 얽히고 설킨 다양한 인간 관계를 갖고 있다. 인간 관계를 유지하기 위해 여러 채널을 통해 커뮤니케이션을 하게 된다. 실생활에서 갖게 되는 인간 관계의 형태와 가장 비슷한 형태의 커뮤니케이션 채널은 휴대전화이다. 사회관계망 이론의 관점에서 보면 휴대전화의 사용은 기존의 인맥에서 친밀도가 적은 사람에게는 영향이 크지 않지만 친밀도가 높은 사람에게는 더욱 친밀하게 만드는 영향을 준다. 이 연구에서는 휴대전화의 통화상대, 통화시간, 통화량 등의 정보가 나타나있는 통화기록에 기반하여 일정기간 동안 통화한 상대들을 추출하였다. 통화기록의 정보를 사회 관계망 분석 도구인 UCINET으로 분석한 결과 휴대전화를 매개로 한 사회관계망의 형태가 자아 중심적 관계망과 같은 형태를 지니고 있다는 사실을 도출해냈다. 그리고 자아 중심적 관계망의 분석 기법을 이용하여 관계망의 중심에 있는 자아와 통화상대와의 관계를 분석하였다. 또한 통화상대들의 휴대전화 통화기록을 통해 서로 관계가 있는지에 대해 알아보았다. 그 결과 자아의 인맥 네트워크 안에 있는 사람들을 그룹화하고 그들의 나이, 성별, 직업에 의해 어떠한 특징을 갖는 그룹인지 분석하였다. 이러한 연구는 휴대전화를 통해 자신의 인간 관계 형태를 파악하여 관계를 관리하고 유지할 수 있는 새로운 모바일 서비스 개발을 위해 활용될 수 있을 것이다.
인터넷의 급속한 발달로 빈번히 발생하고 있는 해킹 및 악성프로그램과 같은 사이버 공격으로부터 중요 정보를 보호하기 위한 망분리 기술이 요구되고 있다. 망분리에는 외부와 내부망을 물리적으로 분리하는 물리적 망분리와 가상화 기술을 이용하여 분리하는 논리적 망분리가 있다. 물리적 망분리는 망구축 및 유지비용이 높으며, 논리적 망분리는 보안 신뢰성이 낮다. 제안하는 LNP는 사이버 공격을 대응할 수 있는 논리적 망분리 방안으로 트래픽 유형을 탐지하여 망을 분리하고, 위협 요소 제거 시 망분리를 해제한다. 논리적으로 망을 분리하는 LNP는 트래픽 경로를 차단하여 중요 정보를 안전하게 보호할 수 있다.
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 널리 이용되어 왔던 신경망모형(Neural Network Model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정밀하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 멀리 이용되어 왔던 신경망모형 (Neural Network Model)은 입력변수가 불완전하고 변동 폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정말하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.