시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이타로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 대표적 데이타마이닝 기법인 연관규칙과 분류기법은 실세계의 여러 응용분야에서 사용된다. 그러나 대부분의 데이타가 시간 속성을 포함함에도 불구하고 기존의 기법들은 시간 속성을 고려하지 않고 주로 정적인 데이타에 대한 지식 탐사만이 진행되었다. 그리고 시간 데이타에 대한 데이타마이닝 연구들은 데이타의 발생시점과 시간 제약조건을 추가한 지식 탐사에 중점을 두고 있어 데이타가 포함한 시간 의미나 시간 관계를 탐사하는데 부족하였다. 이 논문에서는 시간 클래스 연관규칙에 기반한 시간 연관적 분류기법을 제안한다. 이 기법은 분류규칙 생성을 위해서 연관적 분류에 시간 차원을 포함하여 확장한 시간 클래스 연관규칙에 의해 탐사된 규칙들을 적용하는 것이다. 그러므로 이 기법은 기존의 분류 기법들에 비해 더 유용한 지식탐사가 가능하다.
한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
/
pp.295-302
/
2001
최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 기존의 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 비감독학습 기법에 의해 대량의 문서를 효율적으로 분류하기 위한 대표 색인어 추출 기법을 제안하였다. 컴퓨터 분야의 논문을 대상으로 각 분야별 대표 색인어를 추출하여 유사한 문서끼리 분류하는 실험을 통해 제안된 방법의 효율성을 보였다.
최근의 데이타베이스 연구 분야에서는 대규모의 데이타베이스에 저장된 데이타를 분석하여 데이타베이스에 존재하지만 쉽게 드러나지 않는 암시적인 지식을 탐사하는 기술인 데이타마이닝이 각광받 고 있다. 본 논문에서는 이러한 데이타 마이닝의 기법 중의 하나인 연관 규칙 탐사 기법온 연구하며 비록 데이타베이스에서 희소하게 나타나는 데이타이지만 임의의 데이타와 높온 비율로 동시에 나타나는 의미 있는 희소 데이타를 고려한 연관 규칙 탐사 기법을 제안한다. 또한 이러한 희소 항목의 탐사에 대하여 기 존의 연판 규칙 탐사 알고리즘과 제안한 알고리즘의 성능을 비교하여 평가한다.
정보화 시대에 정보의 양이 폭발적으로 증가함에 따라 데이터 마이닝(Data Mining) 또는 데이터베이스에서의 지식 발견이라 불리는 분야가 새로운 정보기술의 활용방법으로 대두되었다. 데이터 마이닝의 한 기법인 연관 규칙 탐사를 위한 자료 구조로 그 동안 해쉬 트리, prefix 트리, 이진 트리 구조 등이 제안되었다. 본 논문에서는 연관 규칙 탐사를 위한 효율적인 자료 구조를 제안하고 실험을 통해 해쉬 트리보다 그 성능이 우수함을 보였다.
대용량의 데이터베이스에서 여러 트랜잭션에 동시에 나타나는 항목들의 모임인 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈발 항목집합을 찾아내는 데이터 마이닝 방법을 연관 규칙 탐사라고 한다. 빈방 항목집합을 찾아내는 문제는 항목 집합들의 후보 집합을 생성하고 빈발 항목집합의 조건을 충족시키는 후보 집합을 추출함으로써 해결된다. 그리고 이러한 작업은 각각의 빈발 k-항목집합에 대해 k가 증가함에 따라 반복적으로 수행된다. 그러나 연관 규칙 탐사에 관한 기존의 연구는 주로 데이터베이스를 이루는 항목들의 수가 많거나 트랜잭션의 길이가 긴 경우의 대용량 데이터베이스에서 빈발 항목집합의 발견에 초점을 맞추고 있다. 본 논문에서는 데이터베이스를 이루는 전체 항목의 수가 적거나 트랜잭션의 크기가 작은 경우 효과적으로 빈발 항목집합을 찾을 수 있는 연관 규칙 탐사 방법을 제안한다. 그리고 성능 평가를 통하여 제안하는 방법의 성능 및 타당성을 보인다.
연관규칙 탐사기법은 트랜잭션을 대상으로 항목간, 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할수 있다는 장점으로 인하여 활발히 연구되어져 왔다. 그러나 현재까지의 연구들은 전체 사용자중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 그러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고, 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 연관규칙이 전체 사용자를 대상으로 한 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.
장바구니 분석에서, 가중 연관 규칙 탐사는 특정 상품에 대한 아이템의 중요도를 반영함으로써 더 많은 이익을 주는 정보를 규칙으로 탐사하였다. 그러나 트랜잭션을 구성하는 아이템들이 한 개 이상의 서로 다른 그룹으로 나누어진다면, 각 그룹의 특성을 반영하는 서로 다른 측정 방법으로 평가되어야 하므로 기존의 가중연관규칙 탐사 방법을 적용할 수가 없다. 본 논문에서는 이를 해결하기 위해서 가중 연관 규칙의 새로운 탐사 방법을 제안하였다. 먼저 각 아이템들은 유사한 특성에 따라 서브 그룹으로 나누고, 아이템 중요도(아이템 가중치)는 서브 그룹에 포함된 아이템들 단위로 계산한다 이때 적용되는 여러 가중 인자들은 아이템의 특성을 반영하는 아이템 그룹별로 재 정의하였다. 제안하는 방법은 네트워크 보안 데이터에 적용하여 위험을 일으키는 요소에 대한 위험 규칙 집합을 생성함으로써 네트워크 위험관리의 정성평가와, 규칙 생성 시 적용된 가중치와 같은 여러 통계인자들에 의해서 위험도를 계산함으로써 정량평가를 가능하게 하였다. 또한 데이터 아이템들이 상이하게 구별될 수 있는 특성을 만족하는 마켓 데이터의 새로운 응용분야에 넓게 적용될 수 있다.
연관규칙 탐사는 지지도와 신뢰도를 바탕으로 연관성 있는 강한 항목들을 탐사한다. 탐사된 연관규칙은 장바구니 분석 등과 같이 전자 상거래 및 대형 소매점 등의 판매 패턴에 대한 분석에 유용하게 적용될 수 있다. 이와 같은 연관규칙 탐사는 대규모로 축적되어 트랜잭션 데이터를 대상으로 하는 기법으로서 대규모 데이터에 대한 반복적 스캔연산을 수반한다. 그러므로 매우 높은 연산 부하를 안고 있으며 이로 인해 동적 환경에서 실시간 제한사항을 탐사에 대한 시도를 하지 못하고 있다. 따라서 이 논문에서는 연관규칙 탐사의 비 실시간적 제한사항을 위하여 트리거와 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제안하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제한하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 연산의 구현 모델을 제시하고 이의 구현 및 실험을 통해 성능 특성을 분석하였다.
연관 규칙 마이닝은 일반적으로 않은 빈발항목집합과 연관 규칙을 생성하며, 생성된 연관 규칙은 상호 포함관계에 있거나 중복되는 경우가 많다. 이는 효과적인 마이닝 뿐 아니라 마이닝의 활용 효용성을 떨어뜨린다. 이를 해결하기 위하여 연관 규칙 마이닝과 동일한 성능을 가지며 생성되는 규칙의 수를 줄일 수 있는 빈발 폐쇄 항목집합 마이닝이 제안되었다. 본 연구에서는 연관규칙 마이닝 방법 중 가장 우수한 성능을 가지는 ARCS 알고리즘을 개선한 빈발 폐쇄 항목집단 마이닝을 제안한다.
최근에는 트랜잭션들 사이의 문맥을 반영하기 위해, 단위 트랜잭션들 사이의 관계를 반영한 확장 트랜잭션을 생성하고 이를 대상으로 인터트랜잭션들에 대한 연관 규칙 탐사방안이 연구되었다. 본 연구에서는 기존 인터트랜잭션들에 대한 연관규칙 탐사 기법에 존재하는 두 가지 문제를 제시하였고 이를 해결하기 위한 방안을 제안하였다. 첫째, 인접한 트랜잭션들 상에 존재하는 데이터의 의미적 변화 정보를 반영하기 위한 방안을 제안했다. 둘째, 트랜잭션을 인터트랜잭션으로 변환하는 과정에서 발생하는 불공정 고려를 해결하기 위한 방안을 제안했다. 이를 통해 기존 연구보다 의미 있는 규칙을 생성할 수 있다. 이를 해양 환경 데이터를 기반으로 실험하여 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.