• 제목/요약/키워드: 연관 규칙 탐사

Search Result 132, Processing Time 0.041 seconds

Association Rule Discovery Considering Strategic Importance: WARM (전략적 중요도를 고려한 연관규칙의 발견: WARM)

  • Choi, Doug-Won
    • The KIPS Transactions:PartD
    • /
    • v.17D no.4
    • /
    • pp.311-316
    • /
    • 2010
  • This paper presents a weight adjusted association rule mining algorithm (WARM). Assigning weights to each strategic factor and normalizing raw scores within each strategic factor are the key ideas of the presented algorithm. It is an extension of the earlier algorithm TSAA (transitive support association Apriori) and strategic importance is reflected by considering factors such as profit, marketing value, and customer satisfaction of each item. Performance analysis based on a real world database has been made and comparison of the mining outcomes obtained from three association rule mining algorithms (Apriori, TSAA, and WARM) is provided. The result indicates that each algorithm gives distinct and characteristic behavior in association rule mining.

A Method for Frequent Itemsets Mining from Data Stream (데이터 스트림 환경에서 효율적인 빈발 항목 집합 탐사 기법)

  • Seo, Bok-Il;Kim, Jae-In;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.139-146
    • /
    • 2012
  • Data Mining is widely used to discover knowledge in many fields. Although there are many methods to discover association rule, most of them are based on frequency-based approaches. Therefore it is not appropriate for stream environment. Because the stream environment has a property that event data are generated continuously. it is expensive to store all data. In this paper, we propose a new method to discover association rules based on stream environment. Our new method is using a variable window for extracting data items. Variable windows have variable size according to the gap of same target event. Our method extracts data using COBJ(Count object) calculation method. FPMDSTN(Frequent pattern Mining over Data Stream using Terminal Node) discovers association rules from the extracted data items. Through experiment, our method is more efficient to apply stream environment than conventional methods.

Mining Association Rule for the Abnormal Event in Data Stream Systems (데이터 스트림 시스템에서 이상 이벤트에 대한 연관 규칙 마이닝)

  • Kim, Dae-In;Park, Joon;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.5
    • /
    • pp.483-490
    • /
    • 2007
  • Recently mining techniques that analyze the data stream to discover potential information, have been widely studied. However, most of the researches based on the support are concerned with the frequent event, but ignore the infrequent event even if it is crucial. In this paper, we propose SM-AF method discovering association rules to an abnormal event. In considering the window that an abnormal event is sensed, SM-AF method can discover the association rules to the critical event, even if it is occurred infrequently. Also, SM-AF method can discover the significant rare itemsets associated with abnormal event and periodic event itemsets. Through analysis and experiments, we show that SM-AF method is superior to the previous methods of mining association rules.

Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle (오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구)

  • 배수균;남도원;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

Design of knowledge search algorithm for PHR based personalized health information system (PHR 기반 개인 맞춤형 건강정보 탐사 알고리즘 설계)

  • SHIN, Moon-Sun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.

An Effective Reduction of Association Rules using a T-Algorithm (T-알고리즘을 이용한 연관규칙의 효과적인 감축)

  • Park, Jin-Hee;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.285-290
    • /
    • 2009
  • An association rule mining has been studied to find hidden data pattern in data mining. A realization of fast processing method have became a big issue because it treated a great number of transaction data. The time which is derived by association rule finding method geometrically increase according to a number of item included data. Accordingly, the process to reduce the number of rules is necessarily needed. We propose the T-algorithm that is efficient rule reduction algorithm. The T-algorithm can reduce effectively the number of association rules. Because that the T-algorithm compares transaction data item with binary format. And improves a support and a confidence between items. The performance of the proposed T-algorithm is evaluated from a simulation.

An Efficient Hashing Mechanism of the DHP Algorithm for Mining Association Rules (DHP 연관 규칙 탐사 알고리즘을 위한 효율적인 해싱 메카니즘)

  • Lee, Hyung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.651-660
    • /
    • 2006
  • Algorithms for mining association rules based on the Apriori algorithm use the hash tree data structure for storing and counting supports of the candidate frequent itemsets and the most part of the execution time is consumed for searching in the hash tree. The DHP(Direct Hashing and Pruning) algorithm makes efforts to reduce the number of the candidate frequent itemsets to save searching time in the hash tree. For this purpose, the DHP algorithm does preparative simple counting supports of the candidate frequent itemsets. At this time, the DHP algorithm uses the direct hash table to reduce the overhead of the preparative counting supports. This paper proposes and evaluates an efficient hashing mechanism for the direct hash table $H_2$ which is for pruning in phase 2 and the hash tree $C_k$, which is for counting supports of the candidate frequent itemsets in all phases. The results showed that the performance improvement due to the proposed hashing mechanism was 82.2% on the maximum and 18.5% on the average compared to the conventional method using a simple mod operation.

Temporal Association Rules with Exponential Smoothing Method (지수 평활법을 적용한 시간 연관 규칙)

  • Byon, Lu-Na;Park, Byoung-Sun;Han, Jeong-Hye;Jeong, Han-Il;Leem, Choon-Seong
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.741-746
    • /
    • 2004
  • As electronic commerce progresses, the temporal association rule is developed from partitioned data sets by time to offer personalized services for customer's interest. In this paper, we proposed a temporal association rule with exponential smoothing method that is giving higher weights to recent data than past data. Through simulation and case study, we confirmed that it is more precise than existing temporal association rules but consumes running time.

Research on User's Query Processing in Search Engine for Ocean using the Association Rules (연관 규칙 탐사 기법을 이용한 해양 전문 검색 엔진에서의 질의어 처리에 관한 연구)

  • 하창승;윤병수;류길수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • Recently various of information suppliers provide information via WWW so the necessary of search engine grows larger. However the efficiency of most search engines is low comparatively because of using simple pattern match technique between user's query and web document. A specialized search engine returns the specialized information depend on each user's search goal. It is trend to develop specialized search engines in many countries. However, most such engines don't satisfy the user's needs. This paper proposes the specialized search engine for ocean information that uses user's query related with ocean and the association rules in web data mining can prove relation between web documents. So this search engine improved the recall of data and the precision in existent search method.

  • PDF

Finding Association Rules based on the Significant Rare Relation of Events with Time Attribute (시간 속성을 갖는 이벤트의 의미있는 희소 관계에 기반한 연관 규칙 탐사)

  • Han, Dae-Young;Kim, Dae-In;Kim, Jae-In;Song, Myung-Jin;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.691-700
    • /
    • 2009
  • An event means a flow which has a time attribute such as the a symptom of patients, an interval event has the time period between the start-time-point and the end-time-point. Although there are many studies for temporal data mining, they do not deal with discovering knowledge from interval event such as patient histories and purchase histories. In this paper, we suggest a method of temporal data mining that finds association rules of event causal relationships and predicts an occurrence of effect event based on discovered rules. Our method can predict the occurrence of an event by summarizing an interval event using the time attribute of an event and finding the causal relationship of event. As a result of simulation, this method can discover better knowledge than others by considering a lot of supports of an event and finding the significant rare relation on interval events which means an essential cause of an event, regardless of an occurrence support of an event in comparison with conventional data mining techniques.