• Title/Summary/Keyword: 연관 규칙 알고리즘

Search Result 200, Processing Time 0.03 seconds

Mining Association Rules in Multiple Databases using Links (복수 데이터베이스에서 링크를 이용한 연관 규칙 탐사)

  • Bae, Jin-Uk;Sin, Hyo-Seop;Lee, Seok-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.939-954
    • /
    • 1999
  • 데이타마이닝 분야에서는 대용량의 트랜잭션 데이타베이스와 같은 하나의 데이타베이스로부터 연관 규칙을 찾는 연구가 많이 수행되어왔다. 그러나, 창고형 할인매장이나 백화점 같이 고객 카드를 이용하는 판매점의 등장으로, 단지 트랜잭션에 대한 분석 뿐만이 아니라, 트랜잭션과 고객과의 관계에 대한 분석 또한 요구되고 있다. 즉, 두 개의 데이타베이스로부터 연관 규칙을 찾는 연구가 필요하다. 이 논문에서는 두 데이타베이스 사이에 링크를 생성하여 연관 항목집합을 찾는 알고리즘을 제안한다. 실험 결과, 링크를 이용한 알고리즘은 고객 데이타베이스가 메모리에 거주가능한 크기라면 시간에 따른 분석에 유용함을 보여주었다.Abstract There have been a lot of researches of mining association rules from one database such as transaction database until now. But as the large discount store using customer card emerges, the analysis is not only required about transactions, but also about the relation between transactions and customer data. That is, it is required to search association rules from two databases. This paper proposes an efficient algorithm constructing links from one database to the other. Our experiments show the algorithm using link is useful for temporal analysis of memory-resident customer database.

Discovering Association Rules using Item Clustering on Frequent Pattern Network (빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견)

  • Oh, Kyeong-Jin;Jung, Jin-Guk;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.

  • PDF

Mining Interesting Rule in Non-Existed Transaction Database Using Time-Windows (트랜잭션이 존재하지 않는 데이터베이스 상의 타임 윈도우를 이용한 마이닝 기법)

  • Lee, Joon-Sub;Kim, Min-Soo;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.15-18
    • /
    • 2001
  • 기존의 Association Rule 의 적용은 각 사건들이 고유한 연관관계를 갖는 다는 전재 하에 이를 이용하여 Data Mining Association Rule(연관규칙)을 적용해 왔다. 만약 이러한 연관규칙이 포함하지 않는 데이터에 대해서는 기존의 Rule 을 이용하기 위해서는 현재의 데이터를 재구성해야만 하는 필요성이 존재를 해왔다. 본 논문에서는 위와 같은 데이터의 재 구성없이 연관규칙을 포함하지 않은 데이터로부터 새로운 알고리즘을 이용하여 기존의 Association Rule 을 적용하고자 한다.

  • PDF

An Implementation and Performance Characteristics of the FP-tree Association Rules Mining Algorithm (FP-tree 연관 규칙 탐사 알고리즘의 구현 및 성능 특성)

  • Lee, Hyung-Bong
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.337-340
    • /
    • 2006
  • FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.

  • PDF

Improved Association Rule Mining by Multiple Sampling & Trimming (복수 샘플링과 트리밍을 통한 고품질 연관규칙 추출법)

  • Hwang, Won-Tae;Kim, Dong-Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.919-921
    • /
    • 2005
  • 본 논문은 전체 데이터베이스에서 일부 추출된 샘플 데이터에서 빈발항목 집합을 찾는 연관규칙 마이닝 알고리즘을 기술한다. 샘플링기술을 이용하면 마이닝과정에서 필요한 데이터베이스의 접근 양을 줄이므로써 실행시간을 단축시킬 수 있다는 장점이 있지만, 전체데이터베이스를 이용한 마이닝보다 정확도가 떨어진다는 단점이 함께 존재한다. 이전의 Chen의 FAST알고리즘은 샘플링을 이용한 마이닝과정에서 거리오차함수를 이용한 트리밍과정을 통해 빈발 1항목집합에 대한 정확도를 개선시켰다. 이후 IFAST 알고리즘은 트리밍과정에서 빈발2-항목집합까지 고려하여 빈발2-항목집합 이상의 빈발항목집합에서도 정확도를 개선시켰다. 본 논문에서는 트리밍과정에서 사용될 추정데이터를 여러 개의 샘플데이터를 이용하여 얻으므로써 오류항목집합(false itemset)의 수를 줄이고 전체적인 정확도를 향상시키는 새로운 알고리즘을 소개한다.

  • PDF

ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining (연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2287-2297
    • /
    • 2007
  • The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.

A Study on WT-Algorithm for Effective Reduction of Association Rules (효율적인 연관규칙 감축을 위한 WT-알고리즘에 관한 연구)

  • Park, Jin-Hee;Pi, Su-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.61-69
    • /
    • 2015
  • We are in overload status of information not just in a flood of information due to the data pouring from various kinds of mobile devices, online and Social Network Service(SNS) every day. While there are many existing information already created, lots of new information has been created from moment to moment. Linkage analysis has the shortcoming in that it is difficult to find the information we want since the number of rules increases geometrically as the number of item increases with the method of finding out frequent item set where the frequency of item is bigger than minimum support in this information. In this regard, this thesis proposes WT-algorithm that represents the transaction data set as Boolean variable item and grants weight to each item by making algorithm with Quine-McKluskey used to simplify the logical function. The proposed algorithm can improve efficiency of data mining by reducing the unnecessary rules due to the advantage of simplification regardless of number of items.

A Movie Recommendation System processing High-Dimensional Data with Fuzzy-AHP and Fuzzy Association Rules (퍼지 AHP와 퍼지 연관규칙을 이용하여 고차원 데이터를 처리하는 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Recent recommendation systems are developing toward the utilization of high-dimensional data. However, high-dimensional data can increase algorithm complexity by expanding dimensions and be lower the accuracy of recommended items. In addition, it can cause the problem of data sparsity and make it difficult to provide users with proper recommended items. This study proposed an algorithm that classify users' subjective data with objective criteria with fuzzy-AHP and make use of rules with repetitive patterns through fuzzy association rules. Trying to check how problems with high-dimensional data would be mitigated by the algorithm, we performed 5-fold cross validation according to the changing number of users. The results show that the algorithm-applied system recorded accuracy that was 12.5% higher than that of the fuzzy-AHP-applied system and mitigated the problem of data sparsity.

Assocate Object Extraction Using personalized user Learning (개인화된 사용자 학습을 위한 연관 객체 추출 설계 및 구현)

  • 유수경;김교정
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.636-639
    • /
    • 2004
  • 본 논문은 웹 도큐먼트를 기반으로 사용자에게 의미 있는 정보를 찾아주기 위한 연관 객체 추출 기법인 PMPL(Personalized Multi-Strategey Pattern Loaming) 시스템을 제안하고자 한다. PMPL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출 시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시켰으며, 연관규칙 탐색을 보완하기 위해 가중치 기법인 만유인력 기법을 적용시켰다. PMPL 시스템을 실행한 결과 개인화된 사용자 중심어 기초로 기존의 단일 학습 기법에 비해 더 많은 의미 있는 연관 지식을 추출한 결과가 보였다.

  • PDF

Data Mining Techniques for Analyzing Promoter Sequences (프로모터 염기서열 분석을 위한 데이터 마이닝 기법)

  • 김정자;이도헌
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.328-332
    • /
    • 2000
  • As DNA sequences have been known through the Genome project the techniques for dealing with molecule-level gene information are being made researches briskly. It is also urgent to develop new computer algorithms for making databases and analyzing it efficiently considering the vastness of the information for known sequences. In this respect, this paper studies the association rule search algorithms for finding out the characteristics shown by means of the association between promoter sequences and genes, which is one of the important research areas in molecular biology. This paper treat biological data, while previous search algorithms used transaction data. So, we design a transformed association nile algorithm that covers data types and biological properties. These research results will contribute to reducing the time and the cost for biological experiments by minimizing their candidates.

  • PDF