• Title/Summary/Keyword: 연관 규칙 알고리즘

Search Result 200, Processing Time 0.027 seconds

A Design of Graph Structured Fuzzy Systems using Grammatic Coding (문법 코딩을 이용한 그래프 구조 퍼지 시스템의 설계)

  • 길준민;황종선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.24-26
    • /
    • 1998
  • 본 논문에서는 그래프 구조 퍼지 시스템을 유전자 알고리즘을 이용하여 최적화할 때, 해개체를 직접 코딩함으로써 발생되는 해개체 길이의 폭발적 증가 문제를 해결하기 위하여 문법 코딩 기법을 이용한 그래프 구조 퍼지 시스템을 제안한다. 문법적 코딩 기법은 퍼지 소속 함수와 퍼지 규칙의 상호 연관적인 규칙을 유전형으로 표현하여 퍼지 규칙의 반복적 패턴 혹은 재귀적 특성을 문법 규칙에 반영시킴으로써 유전자 알고리즘의 탐색공간을 효율적으로 줄인다.

  • PDF

Selection of controller based on frequency of use using Apriori algorithm in SDN environment (SDN 환경에서 Apriori 알고리즘을 이용한 사용 빈도에 기반을 둔 컨트롤러 선택)

  • Yoo, Seung-Eon;Kim, Se-Jun;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.149-150
    • /
    • 2018
  • 본 논문에서는 연관 규칙 마이닝 알고리즘인 Apriori을 이용하여 컨트롤러를 선택하는 모델을 제안하였다. 제안 모델은 모든 컨트롤러 정보를 수집한 다음 발생 지지도(Transaction support)를 이용하여 컨트롤러의 실행 빈도를 측정한다. 이를 통해 연관된 컨트롤러를 동시에 실행함으로써 효율적인 컨트롤러 선택을 기대한다.

  • PDF

An Incremental Mining Technique for Maintenance for Temporal Association Rules (시간 연관규칙의 유지를 위한 점진적인 마이닝 기법)

  • 백옥현;이준욱;김영균;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.178-180
    • /
    • 2001
  • 실세계의 여러 응용에서 데이터베이스의 크기는 계속적으로 증가되어 왔으며, 이러한 데이터베이스 내에서 유용한 지식을 찾아내기 위한 다양한 연구가 진행되어 왔다. 데이터베이스는 시간이 흐름에 따라 동적으로 변환된다. 현재의 연구는 이러한 데이터베이스에서 효과적으로 규칙을 발견하는데 초점이 모아지고 있다. 그러나, 이런 변화에 따라서 기존에 발견되었던 규칙들은 더 이상 유효하지 않을 수 있기 때문에 이전에 발견되었던 규칙들은 유효한지 검증되어야 한다. 데이터베이스가 증가할 때마다 전체를 다시 탐색해서 규칙을 찾는 것은 효과적인 방법이 아니므로, 점진적으로 규칙을 유지할 수 있는 알고리즘이 필요하다. 이 논문에서는 이전에 발견되었던 규칙이 물리적으로 저장되었고 그 후에 데이터베이스가 업데이트된 것을 고려하여 규칙, 특히 시간 연관규칙을 점진적으로 유지할 수 있는 기법을 제시한다.

  • PDF

An Efficient Algorithm for Mining Association Rules using a Compound Hash Tree (복합 해쉬트리를 이용한 효율적인 연관규칙 탐사 알고리즘)

  • Lee, Jae-Mun;Park, Jong-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.3
    • /
    • pp.343-352
    • /
    • 1999
  • 본 논문에서는 대용량 데이터베이스에서 효율적인 연관 규칙 탐사에 대한 알고리즘을 제안하였다. 제안하는 알고리즘은 복합 해쉬 트리를 사용하여 해쉬 트리 탐색 비용과 데이터베이스 스캔 비용을 동시에 줄임으로서 성능을 향상시켰다. 복합 해쉬 트리는 같은 크기의 항목집합들 대신에 크기가 다른 여러 항목집합을 하나의 해쉬 트리로 구성한다. 복합 해쉬 트리의 유용성을 보이기 위하여 제안한 알고리즘은 잘 알려져 있는 Apriori, DHP 방밥과 수행 시간 측면에서 성능 비교를 하였다. 그 결과 대부분의 최소 지지도에서제안한 알고리즘이 Apriori, DHP 방법보다 우수하게 나타났으며, 최소 지지도가 0.5% 이하인 경우 DHP 방법에 비하여 약 30%의 이득 향상이 있었다.

Dynamic Load Balancing Algorithm for Parallel Association Rule Mining (병렬 연관 규칙 마이닝을 위한 동적 부하 분산 알고리즘)

  • Kim, Min-Ho;Kim, Gye-Hyung;Ramakrishna, R.S.
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.377-380
    • /
    • 2002
  • 본 논문에서는 대표적인 데이터 마이닝 기법 중 하나인 연관 규칙 마이닝에 대해 PC 성능의 급속한 발전으로 인한 PC 클러스터 시스템의 이종화의 필연성을 효과적으로 대처할 수 있는 부하 분산 알고리즘을 제안한다. 제안한 부하 분산 기법은 실행 전 성능을 미리 측정할 필요가 없이 실행 중에 성능을 측정할 수 있는 동적 부하 분산 알고리즘으로써 노드들 사이에 성능 정보의 교환 비용밖에 요구되지 않는다. 실험 결과는 제안한 알고리즘이 이종의 클러스터 시스템의 효율성을 극대화함을 보여준다. 또한 본 논문에서는 부하 분산 알고리즘의 성능을 분석할 수 있는 방법을 제시한다.

  • PDF

Selection of controller using improved Artificial Bee Colony algorithm based on Apriori algorithm in SDN environment (SDN 환경에서 Apriori 알고리즘 기반의 향상된 인공벌 군집(ABC) 알고리즘을 이용한 컨트롤러 선택)

  • Yoo, Seung-Eon;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.39-40
    • /
    • 2019
  • 본 논문에서는 연관규칙 마이닝 알고리즘인 Apriori 알고리즘을 기반으로 향상된 인공벌 군집 알고리즘(ABC algorihtm)을 적용하여 SDN 환경에서 분산된 컨트롤러를 선택하는 모델을 제안하였다. 이를 통해 자주 사용되는 컨트롤러를 우선적으로 선택함으로써 향상된 컨트롤러 선택을 목표로 한다.

  • PDF

Privacy-Preserving k-Bits Inner Product Protocol (프라이버시 보장 k-비트 내적연산 기법)

  • Lee, Sang Hoon;Kim, Kee Sung;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 2013
  • The research on data mining that can manage a large amount of information efficiently has grown with the drastic increment of information. Privacy-preserving data mining can protect the privacy of data owners. There are several privacy-preserving association rule, clustering and classification protocols. A privacy-preserving association rule protocol is used to find association rules among data, which is often used for marketing. In this paper, we propose a privacy-preserving k-bits inner product protocol based on Shamir's secret sharing.

Analysis of efficiency of FP-Growth algorithm based on data cardinality (데이터 카디널리티에 따른 FP-Growth 알고리즘의 효율성 분석)

  • Kim, Jin-Hyung;Kim, Byoung-Wook
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.33-35
    • /
    • 2019
  • 서로 다른 아이템 집합의 연관성을 분석하는 것을 연관규칙분석이라 한다. 대표적인 알고리즘으로 Apriori 알고리즘이 있지만 DB스캔 횟수가 많아질 수 있고 후보 집합 생성으로 인해서 속도가 느려질 수 있다는 단점이 있다. 이를 효율적으로 개선한 FP-Growth 알고리즘을 구현하여 임의의 데이터를 이용하여 알고리즘의 속도에 대해 연구한다.

A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm (Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구)

  • Kim, Yong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.4
    • /
    • pp.283-308
    • /
    • 2012
  • With explosive growth of information by recent advancements in information technology and the Internet, users need a method to acquire appropriate information. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Also, users and service providers are growing more and more interested in personalized information recommendation. This study designed and implemented personalized information recommendation system based on AR as a method to provide positive information service for information users as a method to provide positive information service. To achieve the goal, the proposed method overcomes the weaknesses of existing systems, by providing a personalized recommendation method for contents that works in a large-scaled data and user environment. This study based on the proposed method to extract rules from log files showing users' behavior provides an effective framework to extract Association Rule.

Design of knowledge search algorithm for PHR based personalized health information system (PHR 기반 개인 맞춤형 건강정보 탐사 알고리즘 설계)

  • SHIN, Moon-Sun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.