Kim, Eui-Chan;Kim, Kye-Hyun;Lee, Chul-Yong;Park, Eun-Ji
Journal of Korea Spatial Information System Society
/
v.9
no.1
/
pp.105-115
/
2007
Data mining extracts interesting knowledge from a large database. Among numerous data mining techniques, research work is primarily concentrated on clustering and association rules. The clustering technique of the active research topics mainly deals with analyzing spatial and attribute data. And, the technique of association rules deals with identifying frequent patterns. There was an advanced apriori algorithm using an existing bit-clustering algorithm. In an effort to identify an alternative algorithm to improve apriori, we investigated FP-Growth and discussed the possibility of adopting bit-clustering as the alternative method to solve the problems with FP-Growth. FP-Growth using bit-clustering demonstrated better performance than the existing method. We used chess data in our experiments. Chess data were used in the pattern mining evaluation. We made a creation of FP-Tree with different minimum support values. In the case of high minimum support values, similar results that the existing techniques demonstrated were obtained. In other cases, however, the performance of the technique proposed in this paper showed better results in comparison with the existing technique. As a result, the technique proposed in this paper was considered to lead to higher performance. In addition, the method to apply bit-clustering to GML data was proposed.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.7
/
pp.768-774
/
2016
This paper deals with a method to recommend the combination of items as a group according to similarity to handle application area such as fashion and cooking, while the previous methods recommend single item such as a book, music or movie. Collaborative filtering is a method to recommend an item selected by users with similar tendency based on similarity between users. In this paper, the proposed method generates a set of frequent items based on collaborative filtering and association rules and recommends a group by similarity between groups. To show the validity of the proposed method, experiments are performed with purchase data collected from e-commerce for four months.
< TABLE > tags in HTML documents are widely used for formatting layout of Web documents as well as for describing genuine tables with relational information. As a prerequisite for information extraction from the Web, this paper presents an efficient method for sophisticated table detection. The proposed method consists of two phases: preprocessing and attribute-value relations extraction. For the preprocessing where genuine or ungenuine tables are filtered out, appropriate rules are devised based on a careful examination of general characteristics of < TABLE > tags. The remaining is detected at the attribute-value relations extraction phase. Specifically, a value area is extracted and checked out whether there is a syntactic coherency Futhermore, the method looks for a semantic coherency between an attribute area and a value area of a table that may be inappropriate for the syntactic coherency checkup. Experimental results with 11,477 < TABLE > tags from 1,393 HTML documents show at the method has performed better compared with previous works, resulting in a precision of 97.54% and a recall of 99.22% in average.
Journal of the Korean Data Analysis Society founded in 1998 has played the role of a major application journal. In this study, we checked the objective of this journal by checking the abstracts for 10 years. Abstract data was crawled from the online journal site (kdas.jems.or.kr) and analyzed by topic model. As a result, we found 18 topics from 2680 abstracts that had several contents, for example, nursing, marketing, economics, regression, factor analysis, data mining and statistical inferences. Topic1 (regression) is most frequent with 460 documents and we found the usefulness of regression in the applied science area. We confirmed the significant 10 association rules using by Fisher's exact test. Also, for exploring the trend of topics, we conducted the topic analysis for two periods which are 2006-2011 period and 2012-2016 period. We found that the control study was more frequent than survey study over time and regression and factor analysis were frequent regardless of time.
An efficient frequent pattern algorithm is essential for mining association rules as well as many other mining tasks for convergence with its application spread over a very broad spectrum. Models for mining pattern have been proposed using a FP-tree for storing compressed information about frequent patterns. In this paper, we propose a centroid frequent pattern growth algorithm which we called "CAWFP-Growth" that enhances he FP-Growth algorithm by making the center of weights and frequencies for the itemsets. Because the conventional constraint of maximum weighted support is not necessary to maintain the downward closure property, it is more likely to reduce the search time and the information loss of the frequent patterns. The experimental results show that the proposed algorithm achieves better performance than other algorithms without scarifying the accuracy and increasing the processing time via the centroid of the items. The MapReduce framework model is provided to handle large amounts of data via a pseudo-distributed computing environment. In addition, the modeling of the proposed algorithm is required in the fully distributed mode.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.23-27
/
2002
본 논문에서는 정보보호에서 지능형 침입탐지시스템(Intrusion Detection System :IDS) 의한 모델을 제안한다. 이 모델은 데이터 마이닝 분야와 정보보호 분야의 결합된 방법을 이용한다. 즉, 계산환경을 격상하거나 새로운 공격 방법들 때문에 내장된 IDS를 보완 할 필요가 종종 있다. 현재 사용하고 있는 많은 IDS들은 전문적인 지식을 손으로 작성했기 때문에 IDS들의 변환은 가격이 매우 비싸며, 속도가 느리다는 단점이 있다. 이에 본 모델은 침입탐지 모델을 적응 적으로 구축하는데 데이터 마이닝 구조를 활용한다. 데이터 마이닝(Data Mining : DM)의 기술인 연관 규칙, 순차 패턴, 분류, 군집화, 유전자 알고리즘 기법(GA)인 Selection, Crossover, Mutation, Evaluation, Fitness Function의 기능을 접목하여 단점을 보안하고 처리 성능을 최대로 하는 즉, 보다 안전한 지능형 침입 탐지 시스템(IDS) 모델을 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.395-400
/
2009
전자문서를 대상으로 하는 다양한 보안 기술들이 연구 제시되고 있으나, 키 관리에 대한 어려움과 암호 알고리즘의 무거운 특성으로 안전성과 효율성의 반비례 관계가 발생하고 있다. 본 연구의 목적은 위와 같은 문제를 해결하기 위해 전자문서 암호 시스템에 적용 가능한 제안하는 RRM 기법을 응용하여 키 관리 방안에 적용함으로써 효율적인 암호화 과정을 수행하여 전자문서 보호 문제를 개선하는 것이다. 이를 위하여 난수정보에 규칙성을 부여함으로써 키 생성에 대한 이려움을 극복하고 키 테이블과 키셋 정보를 통해 키 관리 문제를 해결하며, 키셋 정보를 통해 복호화를 위한 연산 수행속도를 빠르게 진행할 수 있는 개선된 전자문서 암호화 시스템 수행을 위한 키 관리 방안을 제안한다. 제안하는 키 관리 방안을 통해 키 생성 연관성 문제를 해결함으로써 키 노출문제에 대한 안정성과 단순한 암복호화 과정에 비해 동일한 복잡도와 수행시간을 갖는 연산 기법을 이용하여 효율성을 높였으며, 전자 문서를 암호화 수행 후 관리를 함으로써 유출문제에 대한 문제도 해결할 수 있다.
Journal of Korean Society of Industrial and Systems Engineering
/
v.21
no.48
/
pp.53-63
/
1998
Mining for association rules between items in a large database of sales transaction has been described as an important data mining problem. The mining of association rules can be mapped into the problem of discovering large itemsets. In this paper we present an efficient algorithm for mining association rules by minimizing the total numbers of candidate 2-itemset, │C$_2$│. More the total numbers of candidate 2-itemset, less the time of executing the algorithm for mining association rules. The total performance of algorithm depends on the time of finding large 2-itemsets. Hence, minimizing the total numbers of candidate 2-itemset is very important. We have performed extensive experiments and compared the performance of our algorithm with the DHP algorithm, the best existing algorithm.
Journal of the Korean Operations Research and Management Science Society
/
v.27
no.4
/
pp.29-39
/
2002
The transaction tables of the existing association algorithms have two column attributes : It is composed of transaction identifier (Transaction_id) and an item identifier (item). In this kind of structure, as the volume of data becomes larger, the performance for the SQL query statements came applicable decreases. Therefore, we propose advanced association rules algorithm of n-items which can transact multiple items (Transaction_id, Item 1, Item 2…, Item n). In this structure, performance hours can be contracted more than the single item structures, because count can be computed by query of the input transaction tables. Our experimental results indicate that performance of the n items structure is up to 2 times better than the single item. As a result of this paper, the proposed algorithm can be applied to internet shopping, searching engine and etc.
본 논문은 소프트웨어 설계 시 향상된 오류 검출방법을 통해서 소프트웨어 설계의 질을 향상시켜 그에 따른 소프트웨어 제품의 질을 향상시키데 목적을 두고 있다. 또한 소프트웨어 설계 방법론인 MOA(Methodology for Object to Agents)를 기초로 하고 있으며, MOA는 보편적인 정보 모델로써 온톨로지 기반 모델인 OSSD( Ontology for Sortware Specification and Desigh)모델을 이용한다. 본 논문은 OSSD 모델, 뷰-간 비일관성 검사기법, 일관성 프레임워크의 온톨로지적 특성과 연관된 규칙의 조합을 이용하여 UML모델에서 OSSD 모델로의 변환과정에서 수행되는 새로운 형식의 오류 검출방법을 정의한다. OSSD 모델로의 변환과정은 OSSD 모델의 인스턴스를 생성하기 위한 알고리즘에서 복수의 사상테이블을 이용하는 소프트웨어 설계의 어휘분석과 의미분석을 포함한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.