• 제목/요약/키워드: 연관 검색

검색결과 639건 처리시간 0.027초

실시간 검색어 연관 분석을 통한 핵심 이슈 선정 (Selecting a key issue through association analysis of realtime search words)

  • 정민영
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.161-169
    • /
    • 2015
  • 포털 사이트의 실시간 검색어는 현재 관심이 급상승하고 있는 이슈를 보여주기 위해 주로 검색횟수가 많은 순서에 따라 몇 초 간격으로 제공되고 있다. 그렇지만 너무 짧은 시간 내에 순위가 바뀌는 실시간 검색어의 특성 때문에 하루의 핵심 이슈를 비켜가는 문제가 발생한다. 본 논문에서 이러한 문제를 보완하기 위해 검색어들 사이의 연관 분석을 통하여 검색어들이 관련된 핵심 이슈를 도출하는 방법을 제안하고자 한다. 이를 위해 먼저 실시간 검색어를 순위와 상대적 관심도를 기반으로 점수화하여 집단별 기술통계를 통해 최상위 10개의 검색어를 도출한다. 그 다음으로 지지도와 신뢰도를 기반으로 연관 규칙을 추출하고 이를 가시화하는 그래프 결과를 바탕으로 핵심 이슈를 선정한다. 실험 결과는 단일 최상위 실시간 검색어보다 연관분석을 통해 높은 점수로 선정된 핵심 이슈가 더 큰 의미를 갖는다는 것을 보여준다.

의미적 연관성을 이용한 멀티미디어 정보 검색 (Multimedia Information Retrieval Using Semantic Relevancy)

  • 박창섭
    • 인터넷정보학회논문지
    • /
    • 제8권5호
    • /
    • pp.67-79
    • /
    • 2007
  • 최근 웹 기술의 발달과 유무선 네트워크 성능의 향상, 그리고 다양한 멀티미디어 서비스가 등장함에 따라 텍스트 문서나 이미지에 대한 검색뿐만 아니라 동영상을 포함한 멀티미디어 검색에 대한 요구가 크게 증가하고 있다. 그러나 기존의 멀티미디어 검색 방법은 멀티미디어 콘텐츠에 포함된 의미 개념들의 연관성을 효과적으로 이용하지 못하고 콘텐츠에 대한 메타데이터의 검색에 의존함에 따라 제한적인 검색 결과만을 제공한다. 본 논문에서는 도메인 온톨로지를 활용하여 멀티미디어 콘텐츠의 의미적 연관성에 기반을 둔 멀티미디어 검색 방법 및 시스템 구조를 제안한다. 사용자 검색어를 직접적으로 포함하지 않지만 의미적으로 연관성이 있는 개념들을 온톨로지에서 검색하고 이들에 대한 랭킹을 결정하기 위한 클래스 연관도 척도를 정의하고, 이를 효율적으로 계산하기 위한 알고리즘을 제시한다. 또 프로토타입 시스템 구현 및 실험을 통해 제안한 검색 방법 및 시스템의 효과를 보인다.

  • PDF

시맨틱 RDF 데이터에 대한 효과적인 키워드 검색 (Effective Keyword Search on Semantic RDF Data)

  • 박창섭
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.209-220
    • /
    • 2017
  • 최근 지식 베이스, 시맨틱 웹 등 여러 응용 분야에서 시맨틱 데이터의 활용이 증가함에 따라 대규모 RDF 데이터에 대한 효과적인 검색 방법의 필요성이 커지고 있다. 기존의 개별 루트 시맨틱에 기반한 키워드 검색 방법들은 서로 다른 루트 노드를 갖는 결과 트리들의 집합만을 검색함에 따라, 의미적으로 유사하거나 연관성이 낮은 결과 트리들이 함께 검색되고, 동일한 루트 노드를 공유하되 의미적으로 다르고 질의 연관도가 높은 결과들은 함께 검색될 수 없는 문제점이 있다. 이를 개선하기 위해 본 논문에서는 결과 트리들의 루트 노드의 중복을 제한적으로 허용하여 질의 연관도가 높으면서 다양한 결과들을 함께 검색하는 방법을 제안한다. 이를 위해 결과 트리 집합의 루트 중복도 척도를 정의하고, 주어진 키워드 질의와 최대 루트 중복도에 따라 제한적인 루트 중복성을 가지면서 연관도가 높은 top-k 결과 트리들을 효율적으로 구하기 위한 검색 알고리즘을 제시한다. 실 데이터를 이용한 성능 실험 결과, 제안한 방법이 기존 방법보다 콘텐트 노드들의 중복이 적은 다양한 결과 트리들을 검색할 뿐만 아니라 결과 트리들의 루트 노드의 중복을 허용함으로써 질의 연관도가 더 높은 결과들을 생성할 수 있음을 보였다.

위키피디아 기반의 의미 연관성을 이용한 태깅된 웹 이미지의 검색순위 조정 (Tagged Web Image Retrieval Re-ranking with Wikipedia-based Semantic Relatedness)

  • 이성재;조수선
    • 한국멀티미디어학회논문지
    • /
    • 제14권11호
    • /
    • pp.1491-1499
    • /
    • 2011
  • 오늘날 이미지, 동영상과 같은 멀티미디어 데이터를 웹 공간에 저장하고 검색할 때, 태그를 이용하는 추세는 보편화되어 있다. 본 논문에서는 태깅된 웹 이미지의 검색에서 태그들의 의미적 중요도를 계산하고, 이를 이용하여 검색 순위를 조정하는 시도를 소개한다. 일반적으로 웹상에 저장된 대부분의 사진 이미지들은 실제로는 중요하지 않지만 사용자의 주관적인 판단으로 추가된 태그들을 다수 포함하고 있으며, 이들은 태그의 단순 비교방식으로 이미지를 검색할 때 정확도를 떨어트리는 주요 원인이 된다. 따라서 어떤 이미지에 붙은 수많은 태그들 중에서 의미적으로 보다 중요한 태그들을 찾아내어 검색에 이용한다면 더욱 만족스러운 검색 결과를 얻을 수 있다. 본 논문에서는 위키피디아 기반의 의미 연관성을 활용하여 검색어 또는 다른 태그들과의 의미 연관성이 높은 태그를 해당 이미지의 대표 태그로 판단하고 이를 이용하여 검색 순위를 조정하는 방법을 제안한다. 실험 결과, 방대한 온라인 백과사전인 위키피디아를 이용하여 계산된 의미적 연관성을 이용함으로써 기존의 연구에 비해 향상된 결과를 얻을 수 있었다.

키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템 (Associated Keyword Recommendation System for Keyword-based Blog Marketing)

  • 최성자;손민영;김영학
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.246-251
    • /
    • 2016
  • 최근에 SNS와 온라인 매체의 영향력이 커지면서 이를 이용한 마케팅에 대한 관심이 증가하고 있다. 블로그 마케팅은 대형 포털 사이트의 키워드 검색 결과에 따라 상위 노출을 함으로서 비교적 저렴한 비용으로 마케팅의 파급효과와 정보 전달력을 높일 수 있다. 그러나 일부 특정 키워드의 검색 결과의 경우 상위에 노출되려는 경쟁이 과열될 수 있기 때문에, 블로그를 상위에 노출하기 위해서는 장기적이고 적극적인 노력이 필요하다. 따라서 본 연구에서는 블로그의 상위 노출 가능성이 높은 연관 키워드 그룹을 추천하는 새로운 방법을 제안한다. 제안된 방법은 먼저 타겟 키워드의 검색 결과에 포함된 블로그 문서들을 수집하여 단어의 빈번도와 위치정보를 고려하여 연관성이 높은 키워드를 추출하고 필터링한다. 다음에 각 연관 키워드를 타겟 키워드와 비교하여 그들의 연관성, 월간 연관 키워드 검색 량, 검색에 포함된 블로그의 개수, 블로그의 평균 작성 일을 고려하여 상위 노출의 가능성이 높은 연관 키워드 그룹을 추천한다. 본 연구에서 실험을 통하여 제안된 방법이 연관성이 높은 키워드 그룹을 추천함을 보인다.

멀티 온톨로지 기반의 키워드 연관성을 이용한 전문가 검색 시스템 (The Expert Search System using keyword association based on Multi-Ontology)

  • 정계동;황치곤;최영근
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.183-190
    • /
    • 2012
  • 본 연구는 연구논문 및 저자 프로파일을 기반으로 상호 협력이 가능한 전문가 검색 시스템을 구축한다. 제안한 방법론은 다음과 같다. 첫째, 입력 키워드와 가장 연관성 높은 키워드를 검색하기 위한 가중치 부여 기법을 제안하고, 둘째, 이 기법을 통해 전문가를 효율적으로 검색하는 방안을 제안한다. 우선적으로 논문에서 키워드와 저자 프로파일을 추출하고, 이를 통하여 전문가를 검색할 수 있도록 한다. 이것은 소셜 네트워크의 여러 분야에서 활용할 수 있다. 이러한 정보는 여러 시스템에 분산되어 있다. 이렇게 분산된 데이터를 통합하기 위한 기술로 멀티 온토롤지를 이용하는 기법을 제안한다. 멀티 온톨로지는 메타 온톨로지, 인스턴스 온톨로지, 로케이션 온톨로지와 연관관계 온톨로지로 구성되고, 연관관계 온톨로지는 동적으로 키워드 연관관계 분석을 통해 구축된다. 이 멀티 온톨로지를 이용하여 전문가 망을 제공하고, 이것은 키워드의 연관관계 추적을 통한 전문가 검색이 가능하도록 한다. 이를 통하여 전문가들의 연구물을 확인할 수 있도록 제공함으로써 세부 전문분야를 확인할 수 한다.

XML을 이용한 내용기반 이미지 데이터베이스의 설계 및 검색 시스템 구현 (Design of Content-Based Image Database and Development of Retrieval System using XML)

  • 박선영;용환승
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권4호
    • /
    • pp.572-584
    • /
    • 2000
  • 내용기반 이미지 검색을 하기 위해서는 이미지에 대한 내용정보가 필요하며, 이러한 내용정보간에는 상호 연관성이 존재한다. XML(eXtensible Markup Language)은 내용정보간의 상호연관성을 표현하기에 적절하므로 본 논문에서는 이미지 내용정보를 구조화하기 위한 방법으로 XML을 사용하였다. 또한 이미지는 눈에 보이는 객체의 시각적인 특징과 이미지 전테가 내포하는 시술적인 의미도 가지므로, 이러한 이미지의 특성에 따라 내용정보의 구조도 객체의 시각적 특징 중심의 모델링과 의미 중심의 모델링으로 구분하여 XML 문서 구조를 모델링 하였다. 구조화된 모델들 간의 객체지향 특성을 이용하여 XML 데이터 서버인 eXcelon에 통합하고, 이를 XQL(XML Query Language)에 의하여 질의해 냄으로써 검색 구간에 제약을 가하고 이를 통하여 더욱 효과적인 검색을 지원하도록 한다. 검색되어진 XML 문서 구조는 XSL(extensible StyleSheets Language)의 적용을 통하여 쉬운 형태로 웹 브라우저 상에 출력하도록 한다. 마지막으로 본 논문에서 제안한 모댈링의 효율성을 검증하기 위하여, 웹 상에서 이미지 내용정보의 상호 연관성에 기반 하여 원하는 이미지를 검색할 수 있는 시스템을 구현하였다.

  • PDF

검색 엔진을 이용한 키워드 연관성 분석 (The Keyword Relationship Analysis Using Searching Engine)

  • 이주연;노정현;조수현;이중화;박유현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1077-1080
    • /
    • 2014
  • 대량으로 발생하는 키워드들 간의 연관성을 분석하고자 하는 연구는 꾸준히 진행되어 왔다. 많은 용어들의 관계를 분석하기 위한 방법으로 전문가 집단의 인력과 시간을 수행할 수 있지만, 시간과 비용이 많이 소모된다. 이를 해결하기 위한 방법으로 이미 관련 키워드 서비스를 제공하기 위한 시스템을 구축해 놓은 검색엔진을 사용해서 키워드들 간의 관계를 분석해 볼 수 있다. 본 논문에서는 IT분야의 논문에서 저자들이 자유롭게 작성하는 관심 분야를 키워드로 선정하고, 이 키워드들 간의 관계를 분석하기 위해 검색 엔진에서 출력하는 검색 결과 수를 사용한다. 검색 엔진에서 제공하는 검색 결과 수가 높을수록 다른 키워드와 연관성이 높은 키워드임을 알 수 있다.

멀티미디어 데이터의 다차원 연관규칙 마이닝 (Multi-Dimensional Association Rule Mining in Multimedia Data)

  • 김진옥;황대준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.233-236
    • /
    • 2001
  • 멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 특성국지화를 이용한 내용기반의 정보검색 기술과 다차원 데이터큐브 구축기술을 통해 멀티미디어 데이터에서 연관규칙을 찾아내는 멀티미디어 데이터마이닝 시스템 프로토타입을 제안한다. 특히 멀티미디어 데이터의 칼라, 질감 등 거시적인 이미지 성분 대신 이미지의 영역성과 유사성을 이용한 특성국지화방법을 이용하여 이미지를 분할함으로써 방대한 데이타에서 효과적인 내용기반의 정의 검색을 시행하고 검색한 벡터를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이터베이스에서 데이터간 연관규칙을 찾아내어 지식을 마이닝하는데 효과적인 다차원 데이터큐브를 구축하고 여기에 연관규칙 검색 알고리즘을 적용한다.

  • PDF

연관 관계와 TF*IDF를 이용한 검색 결과 Re-Ranking (Re-ranking for Search result using association relationship and TF*IDF)

  • 이정훈;전서현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.349-352
    • /
    • 2010
  • 질의를 이용한 정보 검색 기술에서 단어 의미의 모호성에 의해 사용자가 검색 하고자 하는 주제 이외의 문서 까지 검색되고 있다. 이러한 문제는 모바일기기의 검색 환경에서 두드러진다. 모바일에서의 검색은 문서의 로딩속도가 느리며 작은 화면에 의해 스크롤이 잦다. 그러므로 원하는 검색 결과가 검색 첫 페이지 이외에 위치하거나, 또는 페이지 하단에 위치할 경우 검색 결과를 확인하는 대에 많은 시간과 노력이 필요하다. 이러한 문제를 해결하기위해선 단어 의미의 모호성을 해결하고 사용자가 검색하고자하는 주제의 검색결과를 검색 상위에 위치시킬 수 있는 방법을 필요로 한다. 이 연구에서는 연관 단어 추출과 TF*IDF를 이용하여, 검색결과를 re-ranking하는 방법을 제시한다.

  • PDF