• Title/Summary/Keyword: 연관정보

Search Result 3,818, Processing Time 0.035 seconds

An Analysis of Related Movie Information Using The Co-Word Method (동시출현단어분석을 이용한 연관영화정보 분석 연구)

  • Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.4
    • /
    • pp.161-178
    • /
    • 2014
  • Recently, many information services allow users to collaborate to produce and use information. Sharing information is also important for users who have similar taste or interest. As various channels are available for users to share their experiences and knowledge, users' data have also been accumulated within the information services. This study collected movie lists made by users of IMDB service. Co-word analysis and ego-centered network analysis were adapted to discover relevant information for users who chose a specific movie. Three factors of movies including movie title, director and genre were used to present related movie information. Movie title is an effective feature to present related movies with various aspects such as theme or characters and the popularity of directors affects on identifying related directors. Genre is not useful to find related movies due to the complexity in the topic of a movie.

Data-Driven Exploration for Transient Association Rules (한시적 연관규칙을 위한 데이타 주도 탐사 기법)

  • Cho, Ll-Rae;Kim, Jong-Deok;Lee, Do-Heon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.4
    • /
    • pp.895-907
    • /
    • 1997
  • The mining of assciation rules disovers the trndency of events ocuring simultaneously in large databases. Previous announced research on association rules deals with associations with associations with respect to the whole transaction. However, xome association rules could have very high confidence in a sub-range of the time domain, even though they do not have quite high confidence in the whole time domain. Such kind of association rules are ecpected to be very usdful in various decion making problems.In this paper, we define transient association rule, as an association with high cimfidence worthy of special attention in a partial time interval, and propose an dfficeint algorithm wich finds out the time intervals appropriate to transient association rules from large-databases.We propose the data-driven retrival method excluding unecessary interval search, and design an effective data structure manageable in main memory obtined by one scanning of database, which offers the necessary information to next retrieval phase. In addition, our simulation shows that the suggested algorithm has reliable performance at the time cost acceptable in application areas.

  • PDF

Association rule Mining between Climate factors and Fruits yields (과실 생산량과 기상요소간의 연관분석 마이닝)

  • Woo, Jong-Seon;Batbaatar, Erdenbileg;Ryu, Keun-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.23-25
    • /
    • 2016
  • 이 논문에서는 기후조건과 농업 생산량을 포함하는 농업/기상 데이터에 데이터 마이닝의 연관규칙 기법을 적용하여 농업 생산의 기반이 되는 기후요인들과 생산량 간의 연관성을 분석하고자 한다. 기후 속성들의 값을 포함하고 있는 기상청 기후 데이터와 농업 생산량을 포함하는 통계청의 데이터를 통합 한 후 기후 속성들의 값을 이산화 하여 연관규칙 기법을 적용한다. 실험 결과 각 기후요소들과 생산량 간의 연관 규칙을 표현 할 수 있었다. 이를 통해 기후조건 변화에 따른 농업생산기반 취약성을 예방하는 지표를 마련하고 농업 생산성 향상에 기여 할 수 있을 것으로 기대한다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Discovery of Association Rules Based on Data of Quantitative Attribute and Time Series (수량적 속성과 시계열 분석에 의한 연관규칙 탐사)

  • 양신모;정광호;김진수;최성용;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.175-177
    • /
    • 2003
  • 연관규칙은 데이터 안에 존재하는 항목들간의 종속 관계를 찾아내는 것이다. 기존의 연구에서는 연관규칙 탐사 과정에서 발견항목 자체에만 관심을 두고 연구되어 왔다. 즉, 연관규칙 생성을 위한 후보 항목은 수량을 배제한 항목 대 수량비가 1:1인 상태에서 규칙을 발견하는 연구였다. 이것은 항목의 구매 수량에 관계없이 같은 가중치로 규칙을 발견하는 문제점을 갖고 있다. 두 번째 문제점은 연관규칙은 시간적 연장선상에서 발견되는 규칙이라 할 수 있다. 즉, 규칙을 발견하는 과정에서 모든 자료를 동일한 시간적 가중치를 두어 취급하는 것이다. 본 논문에서는 각각의 아이템을 (아이템, 수량)의 묶음 단위로 후보항목을 만들어 수량적 속성이 포함된 아이템 대 수량 비 1:n의 관계에서 규칙을 발견하는 방법을 제안한다. 또한 과거의 자료들을 이용하여 예측할 때 모든 자료를 동일하게 취급하기보다는 최근의 자료에 더 큰 비중을 주는 예측법을 사용하여 연관규칙 발견의 신뢰성을 높인다. 성능평가는 기존의 알고리즘과 비교하여 제안한 알고리즘의 성능향상 및 타당성을 보인다.

  • PDF

Essential Technical Patent Extraction Method Associated with Fintech Based on Text Mining (텍스트 마이닝을 통한 핀테크 연관 핵심 기술 특허 추출 방법)

  • Lee, Hwangro;Choi, Eunmi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1219-1222
    • /
    • 2015
  • 금융과 IT가 융합되는 핀테크(Fintech)가 IT산업과 금융산업에 새로운 패러다임으로 급부상하고 있다. 핀테크 기술에 대한 기술동향을 파악하고 유사한 연관 기술을 도출하는 것은 관련 사업자가 시장 경쟁에서 우위를 차지하기 위해 필요한 전략적 방향을 제시해 준다. 하지만 핀테크와 같이 단 기간 내에 기술에 대한 파급 속도가 빠르게 일어나며 산업전반에서 기술선점의 필요성이 크게 대두되는 경우 특허 데이터베이스만으로 유사기술을 검색을 위한 키워드를 선정하는 것이 어렵다는 단점이 있다. 본 논문에서는 새롭게 이슈화되는 기술 중 그 성장세가 급격하게 변화하여 등록된 특허만으로는 연관 기술 영역을 파악하는 일이 번거로운 상황에서 기사 분석을 통해 연관 기술 키워드를 추출 할 수 있는 방법을 제안하고자 한다. 특히 핀테크에서 중요하게 인식되는 결제, 보안, 사용자환경에 대한 연관 기술 키워드를 기사 내용에 포함되는 단어의 빈도 분석을 통해 추출하고자 하였다. 최종적으로 추출된 기술 키워드를 이용하여 실제 특허 검색 데이터베이스에서 관련 특허를 수집하고 분석하여 핀테크와 관련성이 매우 높은 연관 핵심 기술 특허를 도출하였다.

A Design and Implementation of Expert Search Engine Using DataMining (데이타마이닝을 이용한 전문 검색엔진의 설계 및 구현)

  • Hwang, Bo-Youn;Kim, Byung-Chan;Kim, Young-Ji;Mun, Hyeong-Jeong;Woo, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.43-46
    • /
    • 2001
  • 본 논문에서는 데이타마이닝 기법을 이용하여 지능형 전문 검색엔진을 설계하고 사용자 인터페이스를 구현하였다. 먼저, 컴퓨터 분야의 전문 용어에 대하여 연관 규칙 탐사 알고리즘을 이용하여 의미적으로 연관된 용어들끼리 클러스터로 구성하였다. 전문 용어별로 구성된 클러스터는 본 논문에서 제안한 지식베이스 테이블에 저장하여 의미적으로 연관된 용어를 포함하는 웹 문서를 검색하는 과정에서 이용하였다. 검색과정에서는 사용자가 제시한 키워드와 관련된 전문 용어들간의 연관정도를 가중치로 부여하여 연관 정도가 높은 웹 문서순으로 출력하였다. 제안된 방법을 통하여 사용자가 제시한 키워드와 의미적으로 연관된 웹 문서를 효과적으로 검색할 수 있었다.

  • PDF

Study of depression risk factors in simple labor occupation group (단순노무종사자 직업군에서의 우울증 위험요인 연구)

  • Lee, Bum Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.253-258
    • /
    • 2020
  • Depression is a disease with an increasing prevalence worldwide, and is highly associated with mortality as well as several diseases such as hypertension. The aim of this study is to discover clinical risk indicators associated with depression in the occupational group of simple labor workers. This study used the Seventh Korean National Health and Nutrition Examination Survey (2016-2018) conducted by the Korea Centers for Disease Control and Prevention. In association between depression and demographic information, age, sex, degree of stress perception, and stress perception ratio indices had a very high statistical association with depression, and education level and marital status were also associated with depression. Obesity indices such as abdominal circumference and body mass index were not associated with depression. Among the blood information, hemoglobin and hematocrit were highly associated with depression, and statistical significance was maintained even in the analysis adjusted for sex and age. The results of this study can be used as information for the prevention and treatment of depression in the occupational group of simple labor workers in the future.

A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm (Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구)

  • Kim, Yong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.4
    • /
    • pp.283-308
    • /
    • 2012
  • With explosive growth of information by recent advancements in information technology and the Internet, users need a method to acquire appropriate information. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Also, users and service providers are growing more and more interested in personalized information recommendation. This study designed and implemented personalized information recommendation system based on AR as a method to provide positive information service for information users as a method to provide positive information service. To achieve the goal, the proposed method overcomes the weaknesses of existing systems, by providing a personalized recommendation method for contents that works in a large-scaled data and user environment. This study based on the proposed method to extract rules from log files showing users' behavior provides an effective framework to extract Association Rule.

Automatic Summarization based on Lexical Chains considering Word Assocication (단어간의 연관성을 고려한 어휘 체인 기반 자동 요약)

  • Song, Young-In;Han, Kyoung-Soo;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.300-305
    • /
    • 2002
  • 자동 문서 요약 분야에서 대상 문서를 컴퓨터가 이해할 수 있는 형태로 어떻게 파악하고 구조화할 것인가는 중요한 이슈가 되어 왔다. 문서에 출현한 단어들은 Bag of Words 가정처럼 서로 독립적으로 존재하는 것이 아니라 문서가 쓰여진 의도에 따라 서로 간의 의미적, 혹은 지시적으로 연관되어 있다. 이러한 단어간의 연관성은 결속성(cohesion)이라고 표현하며, 이를 이용한 자동 방법으로 Barzilay의 어휘 체인(lexical chain)을 사용한 자동 방법이 대표적이다. 본 연구에서는 단어간의 연관성과 영문 시소러스인 워드넷(wordnet)에서 단어의 위치 정보를 사용하여 어휘 체인의 성능을 개선하였고, 대상 문서의 개념을 어휘 체인에 기반해 표현하여 자동의 성능을 개선하는 방안을 제시한다.

  • PDF