• 제목/요약/키워드: 연관속성 마이닝

검색결과 56건 처리시간 0.043초

퍼지 일반화 계층을 이용한 일반화된 퍼지 정량 연관규칙 마이닝 (Mining Generalized Fuzzy Quantitative Association Rules with Fuzzy Generalization Hierarchies)

  • 한상훈;손봉기;이건명
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.8-11
    • /
    • 2001
  • 연관규칙 마이닝은 트랜잭션 데이터를 이루고 있는 항목간의 잠재적인 의존관계를 발견하는 데이터 마이닝의 한 분야이다. 정량 연관규칙이란 부류적 속성과 정량적 속성을 모두 포함한 연관규칙이다. 정량 연관규칙 마아닝을 위한 퍼지 기술의 응용, 정량 연관규칙 마이닝을 위한 일반화된 연관규칙 마이닝, 사용자의 관심도를 반영한 중요도 가중치가 있는 연관규칙 마이닝 등에 대한 연구가 이루어져 왔다. 이 논문에서는 중요도 가중치가 있는 일반화된 퍼지 정량 연관규칙 마이닝의 새로운 방법을 제안한다. 이 방법은 부류적 속성의 퍼지 개념 계층과 정량적 속성의 퍼지 언어항 일반화 계층을 일반화된 추출하기 위해 이용한다. 이것은 속성들의 수준별 일반화 계층과 속성의 중요도 가중치를 이용함으로써 사용자가 보다 융통성 있는 연관규칙을 마이닝할 수 있게 해준다.

  • PDF

상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝 (Mining Quantitative Association Rules using Commercial Data Mining Tools)

  • 강공미;문양세;최훈영;김진호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권2호
    • /
    • pp.97-111
    • /
    • 2008
  • 상용 데이타 마이닝 도구에서는 기본적으로 이진 속성에 대한 연관규칙 마이닝만을 지원한다. 그러나, 일반적인 트랜잭션 데이타베이스는 이진 속성 뿐 아니라 정량적 속성을 포함한다. 이에 따라, 본 논문에서는 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 마이닝하는 체계적인 접근법을 제안한다. 이를 위해, 우선 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 찾아내기 위한 전체적인 프레임워크를 제안한다. 제안한 프레임워크는 정량적 속성을 이진 속성으로 변환하는 전처리 과정과 마이닝된 이진 연관규칙을 다시 정량적 연관규칙으로 변환하는 후처리 과정으로 구성된다. 다음으로, 전처리 과정을 위한 구간 분할의 개념을 제시하고, 기존의 평균 및 중앙치 기반 양분할 기법과 동일 너비 및 동일 깊이 기반 다분할 기법을 구간 분할의 개념으로 정형적으로 재정의한다. 그런데, 이들 기존 분할 기법은 속성 값의 분포를 고려하지 않은 문제점이 있다. 본 논문에서는 이를 해결하기 위하여 표준편차 최소화 기법을 제안한다. 표준편차 최소화 기법은 이웃한 속성 값의 표준편차 변화가 작다면 동일한 구간에 포함시키고, 표준편차 변화가 크다면 다른 구간으로 분할하는 매우 직관적인 분할 기법이다. 또한, 후처리 과정으로는 이진 연관규칙들을 통합하고 이를 다시 정량적 연관규칙으로 변환하는 방법을 제안한다. 마지막으로, 다양한 실험을 통하여 제안한 프레임워크가 바르게 동작함을 보이고, 표준편차 최소화 기법이 다른 기법에 비하여 우수함을 입증한다. 이 같은 결과를 볼 때, 제안한 프레임워크는 일반 사용자가 상용 데이타 마아닝 도구를 사용하여 정량적 연간규칙을 쉽게 마이닝 할 수 있는 매우 실용적인 접근법이라 생각한다.

최적 연관 속성 규칙을 이용한 비명시적 단백질 상호작용의 예측 (Prediction of Implicit Protein - Protein Interaction Using Optimal Associative Feature Rule)

  • 엄재홍;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2006
  • 단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.

데이터 마이닝을 위한 연관규칙의 다중 값 속성 처리방법 (Processing Multi-Valued Attributes in Association Rules for Data Mining)

  • 김산성;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.340-342
    • /
    • 2002
  • 다중 값이란 속성 값이 집합인 것을 말한다. 즉, 관계형 데이터베이스에서 자료 유형이 집합인 속성을 의미한다. 이러한 다중 값 속성 처리는 기존 데이터마이닝 기술 자체로는 처리한 수 없으며 후처리나 선처리 과정을 이용하여 처리하고 있다. 전처리나 후처리 과정을 통해 처리할 경우 수행과장에 있어 많은 시간이 소요되고 혹은 타당하지 않은 규칙이 생성되는 문제점을 가지고 있다. 특히 연관화 기법 특성상 분석하고자 할 항목이 증가할수록 연관성의 수가 지수(exponential)단위이기 때문에 이를 해결하는데는 상당한 어려움이 따르게 된다. 본 논문에서는 관계형 데이터베이스 테이블 구조에서 데이터 마이닝의 수행을 위한 전처리나 후처리의 과정을 고려하지 않음으로 위에서 언급된 문제점들을 해결하고자 한다. 특히 데이터 변환 작업 없이 정량적(Quantitative)연관 규칙과 연관 규칙(Market Basket Analysis)의 혼합 형태의 규칙을 생성할 수 있게끔 알고리즘을 확장하여 보다 효율적인 규칙이 생성될 수 있도록 한다. 마지막으로 Each Movie 데이터를 사용하여 확장한 알고리즘의 다중 값 속성 처리 방법의 효율성과 타탕성을 검증한다.

  • PDF

확장된 공간 연관 규칙 탐사기법 (Extended Method of Discovery of Spatial Association Rules)

  • 하단심;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.83-86
    • /
    • 2000
  • 공간 데이터가 증가함에 따라 이를 효율적으로 저장하고 분석할 수 있는 기술이 필요하게 되었다. 공간 데이터 마이닝은 데이터베이스에서 유용한 지식을 추출하는 기술로, 기존의 데이터 마이닝 방법에 공간의 개념을 추가하여 확장함으로써 공간 패턴, 공간 객체들의 연관 관계 둥을 얻을 수 있다. 본 논문에서는 공간 데이터 마이닝의 기법 중의 하나인 공간 연관 규칙 탐사 기법을 제안한다. 제안하는 방법은 공간 관계를 포함한 공간 연관 규칙뿐만 아니라 공간 객체의 비공간 속성도 함께 고려함으로써 보다 확장되고 다양한 공간 연관 규칙을 탐사할 수 있다.

  • PDF

캘린더 패턴 기반의 시간 연관적 분류 기법 (Temporal Associative Classification based on Calendar Patterns)

  • 이헌규;노기용;서성보;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권6호
    • /
    • pp.567-584
    • /
    • 2005
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이타로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 대표적 데이타마이닝 기법인 연관규칙과 분류기법은 실세계의 여러 응용분야에서 사용된다. 그러나 대부분의 데이타가 시간 속성을 포함함에도 불구하고 기존의 기법들은 시간 속성을 고려하지 않고 주로 정적인 데이타에 대한 지식 탐사만이 진행되었다. 그리고 시간 데이타에 대한 데이타마이닝 연구들은 데이타의 발생시점과 시간 제약조건을 추가한 지식 탐사에 중점을 두고 있어 데이타가 포함한 시간 의미나 시간 관계를 탐사하는데 부족하였다. 이 논문에서는 시간 클래스 연관규칙에 기반한 시간 연관적 분류기법을 제안한다. 이 기법은 분류규칙 생성을 위해서 연관적 분류에 시간 차원을 포함하여 확장한 시간 클래스 연관규칙에 의해 탐사된 규칙들을 적용하는 것이다. 그러므로 이 기법은 기존의 분류 기법들에 비해 더 유용한 지식탐사가 가능하다.

시간 속성을 갖는 이벤트 집합에서 인터벌 연관 규칙 마이닝 기법 (A Method for Mining Interval Event Association Rules from a Set of Events Having Time Property)

  • 한대영;김대인;김재인;나철수;황부현
    • 정보처리학회논문지D
    • /
    • 제16D권2호
    • /
    • pp.185-190
    • /
    • 2009
  • 시간 속성을 갖는 이벤트 집합에서 동일한 이벤트 타입에 대한 이벤트 시퀀스는 하나의 이벤트로 요약될 수 있다. 그러나 정의된 시간 간격이 경과된 후 발생된 이벤트 타입은 하나 이상의 독립된 서브 이벤트 시퀀스로 요약하는 것이 바람직하다. 본 논문은 Allen의 시간 관계 대수에 기반하여 인터벌 이벤트를 요약하고, 요약된 인터벌 이벤트들로부터 인터벌 연관 규칙을 찾아내는 새로운 시간 데이터 마이닝 기법을 제안한다. 제안하는 기법은 독립적인 서브 시퀀스 개념을 도입하고 인터벌 이벤트 사이의 연관 규칙을 탐사함으로써 질적으로 우수한 정보를 제공한다.

과실 생산량과 기상요소간의 연관분석 마이닝 (Association rule Mining between Climate factors and Fruits yields)

  • 우종선;;류근호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제53차 동계학술대회논문집 24권1호
    • /
    • pp.23-25
    • /
    • 2016
  • 이 논문에서는 기후조건과 농업 생산량을 포함하는 농업/기상 데이터에 데이터 마이닝의 연관규칙 기법을 적용하여 농업 생산의 기반이 되는 기후요인들과 생산량 간의 연관성을 분석하고자 한다. 기후 속성들의 값을 포함하고 있는 기상청 기후 데이터와 농업 생산량을 포함하는 통계청의 데이터를 통합 한 후 기후 속성들의 값을 이산화 하여 연관규칙 기법을 적용한다. 실험 결과 각 기후요소들과 생산량 간의 연관 규칙을 표현 할 수 있었다. 이를 통해 기후조건 변화에 따른 농업생산기반 취약성을 예방하는 지표를 마련하고 농업 생산성 향상에 기여 할 수 있을 것으로 기대한다.

  • PDF

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

공간 데이터 분석을 위한 공간 연관 규칙 탐사 시스템의 설계 및 구현 (Design and Implementation of Spatial Association Rule Discovery System for Spatial Data Analysis)

  • 안찬민;이윤석;박상호;이주홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.27-34
    • /
    • 2006
  • 최근 공간 정보들을 효과적으로 이용할 수 있는 기술에 대한 연구가 활발하게 이루어지고 있다. 효율적인 지식 탐사를 위해 다양한 기존의 데이터 마이닝 방법들이 확장되어 공간 데이터 마이닝에 사용되고 있다. 그러나 기존의 공간 연관 규칙 탐사 시스템들은 프레디킷 간의 연산을 통해 규칙을 발견함에 따라 질의 결과에 다양한 비공간 속성들을 반영하지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 공간 데이터베이스에서 사용되는 질의를 확장하고, 위상정보에 따른 데이터를 구성한 후 비공간 객체 속성간의 연관 규칙을 발견하는 시스템을 제안한다. 특히 지리 정보 시스템에 적용 가능한 모델을 구현하였다. 이렇게 구현된 시스템은 사용 중인 공간 데이터베이스를 확장하므로 이식성이 뛰어나고, 공간 속성뿐만 아니라 다양한 비공간 속성을 고려함으로써 좀 더 실생활에 유용한 공간 연관 규칙을 발견할 수 있다.

  • PDF