자동분류나 정보검색에 주로 이용되는 문헌 클러스터링에서는 문헌간의 유사성을 측정하기 위해 다양한 유사계수를 이용하는데, 모든 유사계수가 동일한 클러스터링 결과를 가져오는 것은 아니다. 본고에서는 50건의 신문기사를 대상으로 SPSS 통계 패키지를 이용하여 다양한 유사계수에 각각 달라지는 문헌 클러스터링의 결과를 살펴본 후, 유사계수간의 연관성을 측정하였다.
사용자가 방문한 웹 사이트와 연관된 광고를 웹 페이지에 실어주는 문맥광고 관련 연구가 광고 효율성 측면에서 최근 주목을 받고 있다. 이러한 문맥광고 관련 연구의 핵심은 웹 페이지와 웹 광고간의 연관성을 높여주는데 있는데, 연관성 향상 방안으로 최근 사용자 의도 분석을 통한 연관성 향상 기법이 많이 연구되고 있다. 그러나 기존 연구에서는 사용자가 로그인을 해야 하거나, 로그 정보를 일정기간이상 수집해야만 사용자 의도 분석이 가능 하다는 문제점이 존재 한다. 본 논문에서는 로그인이나 많은 양의 로그정보 수집 없이 한 세션 내에서 방문한 웹 페이지 로그만을 이용하여 개인화된 문맥 광고를 제공하는 문맥광고 기법을 제안한다. 실험 결과에서는 제안하는 기법이 기존의 광고 기법에 비해 사용자가 판단하는 웹 페이지와 웹 광고의 연관성 (precison) 이 기존의 기법에 비해 높아짐을 증명한다.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.523-532
/
2013
데이터 마이닝은 빅 데이터에 잠재되어 있는 지식이나 패턴을 찾아내는 기술이며, 대표적인 기법 중의 하나가 연관성 규칙 마이닝이다. 이 기법은 지지도, 신뢰도, 향상도 등의 연관성 평가 기준을 기반으로 하여 각 항목들 간의 관련성을 찾아내는 데 활용되고 있다. 연관성을 평가하기 위한 기준으로 여러 가지 흥미도 측도가 개발되어 있는데, 그 중에서도 신뢰도가 가장 많이 활용되고 있으나 연관성의 방향을 알 수가 없다는 단점을 가지고 있다. 이를 보완하기 위한 측도로 순수 신뢰도가 개발되었으나. 양의 신뢰도과 음의 신뢰도의 값이 동일한 경우에는 이 측도의 값이 같아지므로 정확한 연관성 규칙을 발견할 수 없게 된다. 이러한 단점을 보완하기 위해 기여 순수 신뢰도와 비교 신뢰도가 개발되었는데 이들은 이들 측도들이 취할 수 있는 값의 범위에 대한 문제를 제외하고는 흥미도 측도로서는 매우 바람직하다고 할 수 있으나 값의 범위에 대한 문제점이 존재한다. 이 문제를 해결하기 위해 본 논문에서는 기여 순수 신뢰도와 비교 신뢰도의 크기를 동시에 고려한 비교 기여 순수 신뢰도를 제안하였다. 또한 예제를 통하여 그 유용성을 알아본 결과, 비교 기여 순수 신뢰도는 그 부호에 의해 연관성 규칙의 방향을 파악할 수 있는 동시에 그 값의 범위가 [-1, +1]의 값을 가지므로 행태적 해석이 가능한 것으로 확인되었다.
단어의 연관성을 이용하여 문서의 특징을 추출하는 기존의 방법은 주기적으로 프로파일을 갱신해야하는 문제점, 명사구를 처리해야 하는 문제점, 명사구를 처리해야 하는 문제점, 색인어에 대한 화률을 계산해야 하는 문제점 등을 포함한다. 본 논문에서는 연관 단어 마이닝을 사용하여 문서의 특징을 효율적으로 추출하는 방법을 제안한다. 제안한 방법은 Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 백터로 표현한다. Apriori 알고리즘을 사용하여 문서의 특징을 단일 단어가 아닌 연관 단어 벡터로 표현한다. Apriori 알고리즘을 사용하여 문서로부터 추출된 연관 단어는 이를 구성하는 수와 신뢰도와 지지도에 따라 차이를 보인다. 따라서 본 논문에서는 문서 분류의 성능을 향상 시키기 위허ㅐ 연관 단어를 구성하는 단어의 수와 지지도를 결정하는 효율적인 방법을 제안한다. 연관 단어 마이닝을 이용한 특징 추출 방법은 프로파일을 사용하지 않으므로 프로파일 갱신의 필요성이 없으며, 색인어에 대한 확률을 계산하지 않고도, Apriori 알고리즘의 신뢰도와 지지도에 따라 자동으로 명사구를 생성하므로 단어의 연관성을 이용하여 문서의 특징을 추출하는 기존 방법에 대한 문제점을 해결한다. 제안한 방법의 성능을 평가하기 위해 Naive Bayes 분류자를 이용한 문서 분류에 적용하여 정보이득, 역문헌빈도의 방법과 비교하며, 또한 색인어의 연관성과 확률 모델을 기반으로 단어의 연관성을 이용하여 문서 분류를 하는 기존의 방법과 각각 비교한다.
연구배경: 최근 국내 중고령층 수면무호흡증 환자 수는 증가되는 추세이며, 그 중 가장 임상적으로 흔히 나타나는 폐쇄성 수면무호흡증은 전반적인 건강 및 웰빙과 연관된다. 이에 본 연구는 한국 중고령층의 폐쇄성 수면무호흡증 위험과 주관적 건강 및 건강 관련 삶의 질 간의 연관성을 파악하고자 하였다. 방법: 2019-2020년 국민건강영양조사(Korea National Health and Nutrition Examination Survey VIII) 전체 응답자 22,559명 중 40세 이상 성인을 추출하여, 결측치가 없는 총 6,659명의 중고령층을 대상으로 데이터를 2차 분석하였다. 그리고 로지스틱 회귀분석과 다중회귀분석을 통해 폐쇄성 수면무호흡 위험 여부와 주관적 건강 및 건강 관련 삶의 질 간의 연관성을 조사하였다. 결과: 폐쇄성 수면무호흡 비위험군에 비해 위험군인 경우 주관적 건강이 저하될 오즈비는 1.84배(p<0.001) 통계적으로 유의하게 높았고, 건강 관련 삶의 질은 0.02점(β, -0.02; p<0.001) 통계적으로 유의하게 낮은 것으로 나타났다. 특정 변수에 대해 하위그룹 분석을 실시한 결과, 성별, 수면시간, 우울증 여부, 가구소득, 가구원 수에 따라 폐쇄성 수면무호흡 위험과 주관적 건강 및 건강 관련 삶의 질 간의 연관성이 통계적으로 유의하게 나타났다. 폐쇄성 수면무호흡 위험군을 기준으로 하였을 때, 남성에 비해 여성에서 주관적 건강이 낮을 연관성이 더 높았고 건강 관련 삶의 질 점수가 낮았다. 수면시간이 8시간 이상이거나 6시간 이하인 경우 6-8시간인 경우보다 주관적 건강이 낮을 연관성이 더 높았고 건강 관련 삶의 질 점수가 낮았다. 우울증이 있는 경우 없는 경우보다 주관적 건강이 낮을 연관성이 높았다. 가구소득 수준이 낮을수록, 가구원 수가 감소할수록 주관적 건강이 낮을 연관성이 높아지고 건강 관련 삶의 질 점수가 낮아졌다. 결론: 폐쇄성 수면무호흡증 위험이 단순히 수면장애로만 직결되는 것이 아니라 개인의 주관적 건강과 건강 관련 삶의 질과도 연관성이 있다는 점을 인식할 수 있도록 사회적인 지원 및 교육이 제공되어야 한다. 특히 여성, 낮은 가구소득, 1인 가구원, 우울증이 있는 취약계층을 대상으로 폐쇄성 수면무호흡증 예방 및 관리프로그램을 통해 주관적 건강과 건강 관련 삶의 질을 향상시킬 수 있도록 해야 할 것이다.
본 연구에서는 COVID-19의 영향과 온라인 시장을 중심으로 구매패턴이 변화하는 현 경영환경의 시대에서 온라인 배송업체의 구매정보와 상품정보를 기반으로 군집분석과 연관성 분석을 실시하였다. 고객군집, 상품군집, 그리고 교차결합을 통해 데이터를 세분화시켜 결합군집을 생성하여 학문적으로 새로운 방안의 군집분석을 시도하였으며, 각각의 군집분석 결과를 토대로 연관성 분석을 하였다. 연관성 분석 결과, 상대적으로 결합군집에서 더 많은 연관 규칙이 도출 되었으며, 중복률은 더 적은 것으로 분석되어 효율성이 매우 높은 것으로 나타났다. 이는 고객의 니즈에 맞게 상품을 추천하기 위해서는 결합군집이 가장 적합한 모델이라고 판단된다. 결합군집 모델은 소비자에겐 시간 절약과 유용한 정보를 제공하면서, 해당 업체에는 판매량을 증가시키는 등의 긍정적인 효과를 가져올 것으로 사료된다. 향후 연구과제로써, 다양한 특성을 갖고 있는 다수의 온라인 배송업체들을 대상으로 비교·분석한다면 좀 더 명확하고 유의미한 연구결과를 도출할 수 있을것으로 기대된다.
수많은 데이터로부터 우리가 이용할 수 있는 의미 있는 연관성 규칙을 찾는 것은 대단히 중요하다. 연관성 규칙은 데이터베이스의 각 트랜잭션을 분석하여 이에 대한 각종 측정치를 수집하여 이루어지는데 대단히 많은 시간과 노력을 요한다. 본 논문에서는 통계적 추론을 이용하여 탐색도중 주어진 조건을 만족하는 항목에 대하여 의사결정을 내려 탐색시간은 단축할 수 있는 알고리즘을 제안한다. 또한 추론에 따른 오류발생을 최소화 할 수 있는 기법을 제시한다.
연관 규칙 탐사는 이산적인 항목들을 포함하는 트랜잭션 데이터에 존재하는 항목 간 동시 발생 관계를 찾아내는 데 그 목적을 두고 있다. 연관 규칙은 {전항}${\rightarrow}${후항}의 형태를 갖고, 전, 후항은 모두 사전에 정의된 지지도 하한을 만족하는 빈발 항목 집합으로 구성된다. 연관 규칙 탐사에서 문제가 되는 것은 일반적으로 탐사되는 빈발 항목 집합의 개수가 많아지면서 규칙의 개수도 많아지고, 이들 사이에 중복성이 존재한다는 점이다. 따라서 단순히 지지도나 신뢰도 순으로 빈발 항목 집합이나 규칙을 나열하기보다는 항목들의 연관성을 고려하는 것이 분석자에게 보다 도움이 될 수 있다. 본 논문에서는 이를 위하여 연관 규칙 탐사와 함께 계층 군집 분석을 실시하여 항목들 간 연관성을 정리하고, 이를 토대로 빈발 항목 집합들을 나열하는 방법을 제안하고자 한다.
단백질 모티프(motif)란 유사한 기능을 가진 여러 단백질 서열에서 공통적으로 발견되는 패턴으로서 단백질의 기능을 예측하는 단서로 활용된다. 현재 Prosite, Pfam 등의 데이터베이스에서 정규식(regular expression), 가중치 행렬(weighted matrix). 은닉 마코프 모델(hidden Markov model)의 형태로 4천여종 이상의 모티프가 등록되어 있다. 하지만, 이러한 데이터베이스는 모티프와 단백질간의 일대일 관계만을 저장하고 있기 때문에, 모티프 간의 연관성을 파악하기는 어렵다. 본 논문에서는 모티프 간의 연관 관계를 연관 규칙의 형태로 발견하는 데이터 마이닝 기법을 제시한다. 아울러 HITS 데이터베이스로부터 입수한 단백질-모티프 데이터베이스에 본 기법을 적용함으로써 상당히 높은 연관성을 갖는 모티프 집단이 실제로 존재한다는 것을 밝힌다.
제안한 ANIDS(Advanced Network based IDS)는 네트워크 패킷을 수집하여 연관규칙 마이닝 기법을 이용하여 패킷의 연관성을 분석하고, 연관성이 높은 패킷을 이용해 패턴 그래프를 생성한 후, 생성된 패턴 그래프를 이용해 침입인지를 판단하는 네트워크 기반 침입 탐지 시스템이다. ANIDS는 패킷 수집 및 관리하는 PMM(Packet Management Module), 연관성 있는 패킷들만을 이용해 패턴 그래프를 생성하는 PGGM (Pattern Graph Generate Module), 침입을 탐지하는 IDM(Intrusion Detection Module)으로 구성된다. 특히, PGGM은 Apriori 알고리즘을 이용해 $Sup_{min}$보다 큰 연관규칙의 후보 패킷을 찾은 후, 연관규칙의 신뢰도를 측정하여 최소 신뢰도 $Conf_{min}$보다 큰 연관규칙의 패턴 그래프를 생성한다. ANIDS는 패킷간의 연관성을 분석하여 침입인지를 탐지 할 수 있는 패턴 그래프를 사용함으로써, 침입 탐지의 긍정적 결함 오류를 감소시킬 수 있으며, 완벽한 패턴 그래프 패턴이 생성되기 전에, 이미 침입으로 판정된 패턴 그래프 패턴과 비교하여 유사한 패턴 형태를 침입으로 간주하므로 기존의 침입 탐지 시스템에 비해 침입 탐지속도를 감소시키고 침입 탐지율을 증가시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.