• Title/Summary/Keyword: 연관규칙 분석

Search Result 348, Processing Time 0.024 seconds

Analysis of employee's characteristic using data visualization (데이터 시각화를 이용한 취업자 특성분석)

  • Cho, Jang Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.727-736
    • /
    • 2014
  • The fundamental concerns of this paper are to analyze the effects of some characteristics on the employment of new college graduated students in viewpoint of data visualization. We use individual and department characteristic data of K-university graduated students in 2010. We apply multiple correspondence analysis, decision tree analysis, association rules and social network analysis for data visualization. The results of the analysis are summarized as follows. First, an analysis of the determinants of employment shows that GPA, department category, age and number of majors, recruiting time affect the employment rate. Second, higher GPA and natural category of department positively affect the employment rate. Finally, low age, single major and early recruiting time also positively affect the employment rate.

Efficient Rule Validation Methods for User Profiling in Personalization (개인화에서 사용자 프로파일 구축을 위한 효과적인 규칙확인 방법)

  • Sohn, Jun-Won;Bae, Kee-Sung;Suk, Min-Su
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.557-560
    • /
    • 2004
  • 추천 시스템에서부터 1:1 마케팅에 이르는 전자 상거래의 다양한 응용 영역에서, 개별 사용자로부터 개인화된 사용자 프로파일을 구축하는 것은 매우 중요하다. 이러한 프로파일들은 사용자들의 구매 행위와 같은 개인별 행동들을 설명해주며, 특히 다양한 데이터 마이닝(Data Mining) 기술들을 이용해 사용자의 거래 기록으로부터 학습된 규칙들을 발견해낼 수 있다. 발견된 규칙들 중에는 거짓이거나 연관 없거나 또는 하찮은 것들도 존재하기 때문에, 가장 중요한 문제 가운데 하나는 발견된 규칙들을 처리후-분석을 어떻게 수행하느냐이다. 예를 들어, 발견된 규칙을 사용자 프로파일에 적합한 것인지를 확인할 때 좋은 규칙과 나쁜 규칙을 어떻게 판명하는가 하는 문제이다. 이 논문에서는 규칙을 확인하는 과정에서 객관적 척도를 이용하는 방법을 제안하였다.

  • PDF

Customer Relation Management Application using Associative Mining (연관 마이닝을 이용한 고객 관계 관리 적용)

  • Chung, Kyung-Yong;Kim, Jong-Hun;Ryu, Joong-Kyung;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.26-33
    • /
    • 2008
  • The customer relation marketing in which companies can utilize to control and to get the filtered information efficiently has appeared in ubiquitous commerce. It is applying data mining technique to build the management that can even predict and recommend products to customers. In this paper, we proposed the case of customer relation management application using the associative mining. The proposed method uses the associative mining composes frequent customers with occurrence of candidate customer-set creates the association rules. We analyzed the efficient the feature of purchase customers using the hypergraph partition according to the lift of creative association rules. Therefore, we discovered strategies of the cross-selling and the up-selling. To estimate the performance, the suggested method is compared with the existing methods in the questionnaire dataset. The results have shown that the proposed method significantly outperforms the accuracy than the previous methods.

Analysis of efficiency of FP-Growth algorithm based on data cardinality (데이터 카디널리티에 따른 FP-Growth 알고리즘의 효율성 분석)

  • Kim, Jin-Hyung;Kim, Byoung-Wook
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.33-35
    • /
    • 2019
  • 서로 다른 아이템 집합의 연관성을 분석하는 것을 연관규칙분석이라 한다. 대표적인 알고리즘으로 Apriori 알고리즘이 있지만 DB스캔 횟수가 많아질 수 있고 후보 집합 생성으로 인해서 속도가 느려질 수 있다는 단점이 있다. 이를 효율적으로 개선한 FP-Growth 알고리즘을 구현하여 임의의 데이터를 이용하여 알고리즘의 속도에 대해 연구한다.

A Recursive Procedure for Mining Continuous Change of Customer Purchase Behavior (고객 구매행태의 지속적 변화 파악을 위한 재귀적 변화발견 방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Choi, Ju-Cheol;Song, Hee-Seok;Cho, Yeong-Bin
    • Information Systems Review
    • /
    • v.8 no.2
    • /
    • pp.119-138
    • /
    • 2006
  • Association Rule Mining has been successfully used for mining knowledge in static environment but it provides limited features to discovery time-dependent knowledge from multi-point data set. The aim of this paper is to develop a methodology which detects changes of customer behavior automatically from customer profiles and sales data at different multi-point snapshots. This paper proposes a procedure named 'Recursive Change Mining' for detecting continuous change of customer purchase behavior. The Recursive Change Mining Procedure is basically extended association rule mining and it assures to discover continuous and repetitive changes from data sets which collected at multi-periods. A case study on L department store is also provided.

Design of Personalized System using an Association Rule (연관규칙을 이용한 개인화 시스템 설계)

  • Yun, Jong-Chan;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1089-1098
    • /
    • 2007
  • Currently, user require is diverse on the Web. Furthermore, each web user is wishing to retrieve data or goods that hey want to look for more conveniently and more quickly. Because different search criteria and dispositions of web users, they lead to unnecessary repeated operations in order to use implemented by web designer. In this paper, we suggest the system that analyzes user patterns on the Web using the technique of log file analysis and transfers more effectively the information of web sites to users. And we analyze the log file for customer data in the system the proposed method are implemented by means of EC-Miner that is one of the tool of datamining, and aims to offer appropriate Layout corresponding with personalization by giving weight to each transport path.

A study on the Change of Perception of Public Health before and after COVID-19 (COVID-19 발생 전·후 공공의료에 대한 인식변화)

  • Kim, Yu Jeong;Lee, Dong Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.367-370
    • /
    • 2022
  • 본 연구는 코로나19 발생 전·후 공공의료를 둘러싼 사회적 인식변화를 뉴스빅데이터를 통해 파악하고자 시도되었다. 뉴스빅데이터는 코로나19 확진자가 처음 발생한 2020년 1월을 기준으로 나누었으며, 코로나19 발생 이전(2018년 1월~2019년 12월, 총 24개월) 40,834건과 코로나19가 발병 이후(2020년 1월~2021년 12월, 총 21개월) 61,761건이었다. 수집된 빅데이터는 R 4.1.1 for Windows를 활용하여 단어 빈도 분석, 연관규칙분석을 실시하였다. 연구결과, 코로나19 발생 전후 뉴스기사에서 공공의료를 둘러싼 핵심어를 비교할 때 코로나19 발생 후에 발생 전보다 큰 폭으로 상승한 단어는 '확산'(664%), '대응'(658%), '의사'(518%), '상황'(504%), '공공병원'(486%), '의료진'(455%), '확충'(324%), '인력'(305%), '어려움'(272%), '정부'(247%)순으로 나타났다. 코로나19 발생 전후 공공의료를 둘러싼 키워드의 연관규칙 분석을 통해서 의료의 패러다임이 일자리 산업에서 감염증 대응을 위한 보건의료로 전환되는 것을 알수 있었다.

  • PDF

Improving Web Personalization Service Using Web Mining and Collaborative Filtering (웹 마이닝과 협력적 정보 여과를 이용한 개인화 서비스의 성능 개선 방안)

  • 이치훈;고세진;김용환;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.63-65
    • /
    • 2000
  • 웹 개인화 기술의 발달은 많은 업체들이 기존 고객의 유지와 신규 고객의 확보를 위한 수단을 제공하였다. 현재의 개인화 기술은 크게 내용 기반 그리고 협력적 정보 여과 방식에 기반한 기술로 나뉘어질 수 있다. 내용 기반 정보 여과 방식에 기반한 개인화 기술은 멀티미디어 정보로 표현된 대부분의 웹 오브젝트(페이지, 이미지, 동영상, 사운드, 상품 등)에는 적용하기 어렵고, 협력적 정보 여과방식은 Cold Start Problem과 단일 도메인내에서의 개인화 서비스만이 가능하다는 문제점이 있다. 본 논문에서는 협력적 정보 여과 방식과 데이터 마이닝 기술 중의 연관 규칙 생성 방법을 혼합한 웹 개인화 시스템을 제안한다. 다양한 멀티미디어 형태로 표현되는 웹 오브젝트의 내용 분석이 어려우므로, 각각의 오브젝트를 하나의 아이템으로 인식하고 개인화 서비스를 시도하는 협력적 정보 여과 방식을 채택하였다. 협력적 정보 여과의 결과로 발견된 도메인별 유사 사용자의 웹 오브젝트 사용 정보를 연관 규칙 생성 알고리즘에 적용하여 오브젝트간의 연관성을 발견한다. 발견된 오브젝트간의 연관성은 서로 다른 정보 도메인의 오브젝트가 현재 사용자에게 흥미있는 것인가를 예측할 수 있는 자료로서 사용될 수 있다. 협력적 정보 여과 방식에 의해 생성된 오브젝트의 선호도값과 오브젝트 연관성 정보를 비교하여 사용자에게 개인화된 웹 서비스를 제공한다.

  • PDF

A study on decision tree creation using intervening variable (매개 변수를 이용한 의사결정나무 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2011
  • Data mining searches for interesting relationships among items in a given database. The methods of data mining are decision tree, association rules, clustering, neural network and so on. The decision tree approach is most useful in classification problems and to divide the search space into rectangular regions. Decision tree algorithms are used extensively for data mining in many domains such as retail target marketing, customer classification, etc. When create decision tree model, complicated model by standard of model creation and number of input variable is produced. Specially, there is difficulty in model creation and analysis in case of there are a lot of numbers of input variable. In this study, we study on decision tree using intervening variable. We apply to actuality data to suggest method that remove unnecessary input variable for created model and search the efficiency.

A Patent Trend Analysis for Technological Convergence of IoT and Wearables (IoT와 Wearables 기술융합을 위한 특허동향분석)

  • Kang, Ji Ho;Kim, Jong Chan;Lee, Jun Hyuck;Park, Sang Sung;Jang, Dong Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.306-311
    • /
    • 2015
  • This study aims at analyzing the convergence of Internet-of-Things and wearables technologies using cooperative patent classification(CPC). CPC, introduced to an increasing number of technological fields of Korean patents, is expected to be widely used in Patent Informatics because the classification codes in CPC are more specific than those of IPC, which reflect the characteristics of technologies in detail with accuracy. CPC has seldom been used up to date and most of the previous researches on technological convergence used IPC. As a pre-analysis step for analyzing the trend of technological convergence of IoT and wearables, CPC and IPC codes assigned to each patent were compared. By applying association rule mining to the analysis of CPC codes, we identified the technological fields where convergence frequently takes place and examined the trend of technological convergence over time.