• Title/Summary/Keyword: 연관규칙 마이닝

Search Result 287, Processing Time 0.029 seconds

Analysis of the Research Trends by Environmental Spatial-Information Using Text-Mining Technology (텍스트 마이닝 기법을 활용한 환경공간정보 연구 동향 분석)

  • OH, Kwan-Young;LEE, Moung-Jin;PARK, Bo-Young;LEE, Jung-Ho;YOON, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.113-126
    • /
    • 2017
  • This study aimed to quantitatively analyze the trends in environmental research that utilize environmental geospatial information through text mining, one of the big data analysis technologies. The analysis was conducted on a total of 869 papers published in the Republic of Korea, which were collected from the National Digital Science Library (NDSL). On the basis of the classification scheme, the keywords extracted from the papers were recategorized into 10 environmental fields including "general environment", "climate", "air quality", and 20 environmental geospatial information fields including "satellite image", "numerical map", and "disaster". With the recategorized keywords, their frequency levels and time series changes in the collected papers were analyzed, as well as the association rules between keywords. First, the results of frequency analysis showed that "general environment"(40.85%) and "satellite image"(24.87%) had the highest frequency levels among environmental fields and environmental geospatial information fields, respectively. Second, the results of the time series analysis on environmental fields showed that the share of "climate" between 1996 and 2000 was high, but since 2001, that of "general environment" has increased. In terms of environmental geospatial information fields, the demand for "satellite image" was highest throughout the period analyzed, and its utilization share has also gradually increased. Third, a total of 80 correlation rules were generated for environmental fields and environmental geospatial information fields. Among environmental fields, "general environment" generated the highest number of correlation rules (17) with environmental geospatial information fields such as "satellite image" and "digital map".

Design of Personalized System using an Association Rule (연관규칙을 이용한 개인화 시스템 설계)

  • Yun, Jong-Chan;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1089-1098
    • /
    • 2007
  • Currently, user require is diverse on the Web. Furthermore, each web user is wishing to retrieve data or goods that hey want to look for more conveniently and more quickly. Because different search criteria and dispositions of web users, they lead to unnecessary repeated operations in order to use implemented by web designer. In this paper, we suggest the system that analyzes user patterns on the Web using the technique of log file analysis and transfers more effectively the information of web sites to users. And we analyze the log file for customer data in the system the proposed method are implemented by means of EC-Miner that is one of the tool of datamining, and aims to offer appropriate Layout corresponding with personalization by giving weight to each transport path.

Design and Implementation of a Spatial Data Mining System (공간 데이터 마이닝 시스템의 설계 및 구현)

  • Bae, DUck-Ho;Baek, Ji-Haeng;Oh, Hyun-Kyo;Song, Ju-Won;Kim, Sang-Wook;Choi, Myoung-Hoi;Jo, Hyeon-Ju
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.119-132
    • /
    • 2009
  • Owing to the GIS technology, a vast volume of spatial data has been accumulated, thereby incurring the necessity of spatial data mining techniques. In this paper, we propose a new spatial data mining system named SD-Miner. SD-Miner consists of three parts: a graphical user interface for inputs and outputs, a data mining module that processes spatial mining functionalities, a data storage model that stores and manages spatial as well as non-spatial data by using a DBMS. In particular, the data mining module provides major data mining functionalities such as spatial clustering, spatial classification, spatial characterization, and spatio-temporal association rule mining. SD-Miner has own characteristics: (1) It supports users to perform non-spatial data mining functionalities as well as spatial data mining functionalities intuitively and effectively; (2) It provides users with spatial data mining functions as a form of libraries, thereby making applications conveniently use those functions. (3) It inputs parameters for mining as a form of database tables to increase flexibility. In order to verify the practicality of our SD-Miner developed, we present meaningful results obtained by performing spatial data mining with real-world spatial data.

  • PDF

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

A Study on the Design of IPS with Expanded IDS Functions (확장된 IDS 기능을 간진 IPS 설계에 관한 연구)

  • 나호준;최진호;김창수;박근덕
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.951-954
    • /
    • 2002
  • 최근의 침입탐지시스템(IDS: Intrusion Detection System) 기술동향은 Misuse 방식의 규칙 데이터베이스 변경에 대한 한계성 때문에 Anomaly 방식의 NIDS(Network IDS)에 대한 연구가 고려되고 있다. 현재 국내에서 개발된 기존의 제품들은 대부분 Misuse 방식을 채택하고 있으며, 향후 국제 경쟁력을 갖추기 위해서는 Anomaly 방식의 기술 연구가 필요하다. 본 연구에서는 본 연구실에서 개발한 NIDS를 기반으로 연관 마이닝을 이용한 비정상 탐지 문제, 내부 정보 유출 차단 등에 대한 통합된 시스템 설계 방향을 제시하여 국가기관이나 기업이 보다 안전하게 침입을 관리할 수 있는 IPS(Intrusion Prevention System) 시스템을 설계한다.

  • PDF

A novel on Context Information Analysis and Prediction Process using Text Mining (텍스트 마이닝을 이용한 상황 정보 분석 및 예측 프로세스에 관한 연구)

  • Jung, Se-hoon;Kang, Joo-hee;Kim, Jong-chan;Sim, Chun-bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1039-1040
    • /
    • 2015
  • 최근 IoT 및 인공지능 기술을 활용한 상황 정보 예측 서비스가 각광을 받고 있다. 본 논문에서는 특정 메타 데이터(Meta Data)로부터 입력되는 정보를 기반으로 상황 정보 분석 및 예측하는 프로세스를 제안한다. 주성분 분석 및 데이터의 집단화(Corpus), 문서 매트릭스(Document Matrix), 단어 빈도수(Frequency)에 따른 데이터 전처리 과정을 통해 상황정보 데이터를 확보한다. 또한 연관 규칙분석을 통해 분류된 데이터의 연관성을 분석하여 예측 데이터의 연관성을 확보한다. 제안하는 상황정보 분석 및 예측 모델은 R을 적용하여 설계한다.

  • PDF

An Interpretation of Interoperability Definitions Using Association Rules Discovery (연관성 규칙 탐사를 이용한 상호운용성 정의의 해석)

  • Heo, Hwan;Kim, Ja-Hee
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.2
    • /
    • pp.39-71
    • /
    • 2011
  • Lately, developing systems fully interoperable with others is considered an essential element for successful projects, as not only do e-commerce becomes ubiquitous but also distributed systems' paradigm spreads. However, since definitions of interoperability vary by viewpoints, it is still difficult to have the same understanding and evaluation criteria on interoperability. For instance, various interoperability parties in military use different definitions of interoperability, and its T&E is not conducted according to the definition, but only to levels of information exchange. In this paper, we proposed a new definition of interoperability as followsm First of all, we collected existing and various interoperability definitions, extracting key components in each of them. Second, we statistically analyzed those components and applied the association rules discovery in data mining. We compared existing interoperability definitions to ours. From this research, we found associations among the components from various definitions applying market-basketanalysis, redefining interoperability. Key findings of this research can contribute to a unified viewpoint on the definition, level, and evaluation items of interoperability.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

Selecting a key issue through association analysis of realtime search words (실시간 검색어 연관 분석을 통한 핵심 이슈 선정)

  • Chong, Min-Yeong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.161-169
    • /
    • 2015
  • Realtime search words of typical portal sites appear every few seconds in descending order by search frequency in order to show issues increasing rapidly in interest. However, the characteristics of realtime search words reordering within too short a time cause problems that they go over the key issues of the day. This paper proposes a method for deriving a key issue through association analysis of realtime search words. The proposed method first makes scores of realtime search words depending on the ranking and the relative interest, and derives the top 10 search words through descriptive statistics for groups. Then, it extracts association rules depending on 'support' and 'confidence', and chooses the key issue based on the results as a graph visualizing them. The results of experiments show that the key issue through association rules is more meaningful than the first realtime search word.