• 제목/요약/키워드: 연관규칙분석

검색결과 348건 처리시간 0.026초

시정보 반영을 통한 연관규칙의 신뢰도 측정 (Association Rules Reflected Temporal Information)

  • 옥지웅;백주련;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.353-356
    • /
    • 2006
  • 연관규칙 (Association rule) 마이닝은 무수히 많은 데이터로부터 유용한 정보만을 뽑아내어 실생활에 적용하여 이점을 얻게 하는 데이터마이닝의 가장 핵심적인 연구분야이다. 마켓 기반 데이터들로부터 고객들의 구매유형을 분석하여 적절한 판매전략을 세우거나 기업 데이터로부터 특정 업무와 관련된 의사결정을 지원하는 등의 일이 모두 연관규칙을 기반으로 한다. 그러나 대부분의 연관규칙들은 시간을 고려하지 않는 않거나, 순차패턴만을 고려해왔다. 따라서 하루중 특정 규칙이 발생되지 않는 시간대에도 그 규칙에 대한 불필요한 노력이 있었다. 본 논문에서는 추출된 연관규칙들과 각 트랜잭션에 부여한 시간 정보를 분석하여 특정 항목 (Item) 집합들 간의 연관규칙이 빈번하게 발생하는 시간대를 추출한다. 추출되 시간 정보를 이용하여 시간대별 유용한 판매 전략을 세움으로써, 상품 판매를 극대화하고자 한다.

  • PDF

클러스터링과 특성분석을 이용한 구간 데이터에서 다차원 연관 규칙 마이닝 (Mining of Multi-dimensional Association Rules over Interval Data using Clustering and Characterization)

  • 임승환;권용석;김상욱
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.60-64
    • /
    • 2010
  • 비 트랜잭션 데이터를 대상으로 연관 규칙을 도출하기 위해서, 데이터의 속성들을 구간화하는 기법들이 활발하게 연구되었다. 이러한 기존의 연구들은 구간화 단계에서 구간 범위의 변화에 따른 연관 규칙의 신뢰도 변화를 반영하지 않고, 구간화 단계와 연관 규칙을 도출하는 단계들을 독립적으로 수행하였다. 이로 인해 속성들의 구간이 부적절하게 설정되고, 이 결과 높은 신뢰도를 갖는 연관 규칙들이 최종 결과에서 누락된다. 따라서 본 논문에서는 속성들을 구간화하는 단계와 연관 규칙들을 도출하는 단계를 병합하여 동시에 수행함으로써, 가장 신뢰도가 높은 연관규칙들을 도출할 수 있는 구간을 설정하는 방안을 제안한다. 이를 위해서 연관 규칙의 우변의 속성들을 대상으로 계층적 클러스터링을 수행하고, 각 클러스터들에 대해서 특성 분석을 수행한다. 실험 결과, 제안하는 기법은 기존의 기법들에 비해서 높은 신뢰도를 갖는 연관 규칙들을 발견하는 것으로 나타났다.

수량적 속성과 시계열 분석에 의한 연관규칙 탐사 (Discovery of Association Rules Based on Data of Quantitative Attribute and Time Series)

  • 양신모;정광호;김진수;최성용;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.175-177
    • /
    • 2003
  • 연관규칙은 데이터 안에 존재하는 항목들간의 종속 관계를 찾아내는 것이다. 기존의 연구에서는 연관규칙 탐사 과정에서 발견항목 자체에만 관심을 두고 연구되어 왔다. 즉, 연관규칙 생성을 위한 후보 항목은 수량을 배제한 항목 대 수량비가 1:1인 상태에서 규칙을 발견하는 연구였다. 이것은 항목의 구매 수량에 관계없이 같은 가중치로 규칙을 발견하는 문제점을 갖고 있다. 두 번째 문제점은 연관규칙은 시간적 연장선상에서 발견되는 규칙이라 할 수 있다. 즉, 규칙을 발견하는 과정에서 모든 자료를 동일한 시간적 가중치를 두어 취급하는 것이다. 본 논문에서는 각각의 아이템을 (아이템, 수량)의 묶음 단위로 후보항목을 만들어 수량적 속성이 포함된 아이템 대 수량 비 1:n의 관계에서 규칙을 발견하는 방법을 제안한다. 또한 과거의 자료들을 이용하여 예측할 때 모든 자료를 동일하게 취급하기보다는 최근의 자료에 더 큰 비중을 주는 예측법을 사용하여 연관규칙 발견의 신뢰성을 높인다. 성능평가는 기존의 알고리즘과 비교하여 제안한 알고리즘의 성능향상 및 타당성을 보인다.

  • PDF

항목 계층 구조에 기반한 빈발 항목 집합 나열 방법 (Item Hierarchy based Frequent Itemset Ordering Method)

  • 김준우;강현경
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2013년도 춘계 종합학술대회 논문집
    • /
    • pp.301-302
    • /
    • 2013
  • 연관 규칙 탐사는 이산적인 항목들을 포함하는 트랜잭션 데이터에 존재하는 항목 간 동시 발생 관계를 찾아내는 데 그 목적을 두고 있다. 연관 규칙은 {전항}${\rightarrow}${후항}의 형태를 갖고, 전, 후항은 모두 사전에 정의된 지지도 하한을 만족하는 빈발 항목 집합으로 구성된다. 연관 규칙 탐사에서 문제가 되는 것은 일반적으로 탐사되는 빈발 항목 집합의 개수가 많아지면서 규칙의 개수도 많아지고, 이들 사이에 중복성이 존재한다는 점이다. 따라서 단순히 지지도나 신뢰도 순으로 빈발 항목 집합이나 규칙을 나열하기보다는 항목들의 연관성을 고려하는 것이 분석자에게 보다 도움이 될 수 있다. 본 논문에서는 이를 위하여 연관 규칙 탐사와 함께 계층 군집 분석을 실시하여 항목들 간 연관성을 정리하고, 이를 토대로 빈발 항목 집합들을 나열하는 방법을 제안하고자 한다.

  • PDF

정보이론에 기반한 연관 규칙들의 새로운 중요도 측정 방법 (A New Importance Measure of Association Rules Using Information Theory)

  • 이창환;배주현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권1호
    • /
    • pp.37-42
    • /
    • 2014
  • 연관 규칙들을 이용한 분류학습은 최근 활발히 연구되는 분야의 하나이다. 이러한 연관 규칙을 이용한 분류에는 연관 규칙들에 대한 수치적 중요도를 계산하는 것이 중요하다. 본 논문에서는 정보 이론을 사용한 H measure 라는 새로운 규칙 중요도 기법을 제안한다. 구체적으로 Hellinger 변량을 이용하여 연관규칙의 중요도를 계산한다. 제안된 H measure 의 다양한 특성들을 분석하였으며 또한 이러한 H measure를 이용한 분류학습의 성능을 다른 규칙 measure를 이용한 분류학습의 성능과 비교하였다.

오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구 (Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle)

  • 배수균;남도원;이동하;이전영
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

발생빈도를 고려한 연관성분석 연구 (A study of association rule by considering the frequency)

  • 임제순;이경준;조영석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1061-1069
    • /
    • 2010
  • 데이터마이닝 분야에서 연관성분석은 가장 많이 사용되고 있는 기법으로 데이터 내에 포함되어 있는 특정 항목들의 연관성을 수치화시켜 나타내는 방법이다. 기본적으로 연관성규칙은 지지도, 신뢰도, 향상도를 계산하여 연관성의 유무를 판단한다. 기존에 제시된 관련 논문에서는 관심변수의 발생유무만을 바탕으로 연관성규칙을 이용하였고, 빈번하지 않은 데이터에 대한 문제점과 순위결정함수를 통한 해결방안을 제시하였다. 하지만 실제 데이터에서는 발생이 빈번하지 않은 데이터 뿐 아니라, 발생이 많이 일어나는 데이터도 존재한다. 따라서 발생빈도를 고려한 연관성규칙이 필요하다고 생각한다. 본 논문에서는 각 케이스 내의 발생빈도를 고려한 새로운 연관성 측정 도구를 제시하였다. 또한 실제 예제를 통하여 기존의 연관성규칙과 새로운 연관성규칙의 결과를 비교해 보았다. 그 결과, 새로 제시한 연관성규칙이 기존의 연관성규칙보다 더 세밀하게 구분하는 것을 확인할 수 있었다.

확장된 공간 연관 규칙 탐사기법 (Extended Method of Discovery of Spatial Association Rules)

  • 하단심;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.83-86
    • /
    • 2000
  • 공간 데이터가 증가함에 따라 이를 효율적으로 저장하고 분석할 수 있는 기술이 필요하게 되었다. 공간 데이터 마이닝은 데이터베이스에서 유용한 지식을 추출하는 기술로, 기존의 데이터 마이닝 방법에 공간의 개념을 추가하여 확장함으로써 공간 패턴, 공간 객체들의 연관 관계 둥을 얻을 수 있다. 본 논문에서는 공간 데이터 마이닝의 기법 중의 하나인 공간 연관 규칙 탐사 기법을 제안한다. 제안하는 방법은 공간 관계를 포함한 공간 연관 규칙뿐만 아니라 공간 객체의 비공간 속성도 함께 고려함으로써 보다 확장되고 다양한 공간 연관 규칙을 탐사할 수 있다.

  • PDF

연관 규칙 분석 알고리즘을 활용한 영작문 형태.통사 오류 자동 발견 (Automatic Error Detection of Morpho-syntactic Errors of English Writing Using Association Rule Analysis Algorithm)

  • 김동성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2010
  • 본 연구에서는 일련의 연구에서 수집된 영작문 오류 유형의 정제된 자료를 토대로 연관 규칙을 생성하고, 학습을 통해서 효용성이 검증된 연관 규칙을 활용해서 영작문 데이터의 형태 통사 오류를 자동으로 탐지한다. 영작문 데이터에서 형태 통사 오류를 찾아내는 작업은 많은 시간과 자원이 소요되는 작업이므로 자동화가 필수적이다. 기존의 연구들이 통계적 모델을 활용한 어휘적 오류에 치중하거나 언어 이론적 틀에 근거한 통사 처리에 집중하는 반면에, 본 연구는 데이터 마이닝을 통해서 정제된 데이터에서 연관 규칙을 생성하고 이를 검증한 후 형태 통사 오류를 감지한다. 이전 연구들에서는 이론적 틀에 맞추어진 규칙 생성이나 언어 모델 생성을 위한 대량의 코퍼스 데이터와 같은 다량의 지식 베이스 생성이 필수적인데, 본 연구는 적은 양의 정제된 데이터를 활용한다. 영작문 오류 유형의 형태 통사 연관 규칙을 생성하기 위해서 Apriori 알고리즘을 활용하였다. 알고리즘을 통해서 생성된 연관 규칙 중 잘못된 규칙이 생성될 가능성이 있으므로, 상관성 검정, 코사인 유사도와 같은 규칙 효용성의 통계적 검증을 활용해서 타당한 규칙만을 학습하였다. 이를 통해서 축적된 연관 규칙들을 영작문 오류를 자동으로 탐지하는 실험에 활용하였다.

  • PDF

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.91-103
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다.

  • PDF