• Title/Summary/Keyword: 연계모델링

Search Result 656, Processing Time 0.028 seconds

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.

The Current Status of BIM in the Field of Landscape Architecture and the Issues on the Adoption of LIM (BIM에 관한 조경분야의 동향 및 LIM 활성화 방안)

  • Kim, Bok-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.3
    • /
    • pp.50-63
    • /
    • 2014
  • Since the new millennium, BIM has been widely adopted to improve productivity in the field of architecture, engineering, and construction with the government policies of each country. After its first introduction into the field of landscape architecture in USA, BIM has been debated on its merits and limitations mainly by the European countries' academic and, at the same time, practical worlds. However, little attention has been paid to BIM, in particular, in the field of landscape architecture in Korea leaving many issues to solve to fully utilize BIM. The purpose of this study is to present the main issues and strategic agenda for the successful introduction of BIM in landscape architecture in Korea. This study shows that the new derived word of LIM(Landscape Information Modeling) instead of BIM appeared in the field of landscape architecture. Then, this paper discusses the main issues on standardization and interoperability in the adoption of LIM to create, integrate, and reuse landscape information. Finally, four strategic agenda are presented to successfully introduce LIM into the domestic field of landscape architecture by reviewing the societies of the landscape discipline in UK and Norway that play a leading role by organizing BIM working groups.

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Analysis on Trend of Study Related to Computational Thinking Using Topic Modeling (토픽 모델링을 이용한 컴퓨팅 사고력 관련 연구 동향 분석)

  • Moon, Seong-Yun;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.607-619
    • /
    • 2019
  • As software education was introduced through the 2015 revised curriculum, various research activities have been carried out to improve the computational thinking of learners beyond the existing ICT literacy and software utilization education. With this change, the purpose of this study is to examine the research trends of various research activities related to computational thinking which is emphasized in software education. To this end, we extracted the key words from 190 papers related to computational thinking subject published from January 2014 to September 2019, and conducted frequency analysis, word cloud, connection centrality, and topic modeling analysis on the words. As a result of the topical modeling analysis, we found that the main studies so far have included studies on 'computational thinking education program', 'computational thinking education for pre-service teacher education', 'robot utilization education for computational thinking', 'assessment of computational thinking', and 'computational thinking connected education'. Through this research method, it was possible to grasp the research trend related to computational thinking that has been conducted mainly up to now, and it is possible to know which part of computational thinking education is more important to researchers.

Exploring Potential Application Industry for Fintech Technology by Expanding its Terminology: Network Analysis and Topic Modelling Approach (용어 확장을 통한 핀테크 기술 적용가능 산업의 탐색 :네트워크 분석 및 토픽 모델링 접근)

  • Park, Mingyu;Jeon, Byeongmin;Kim, Jongwoo;Geum, Youngjung
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.1-28
    • /
    • 2021
  • FinTech has been discussed as an important business area towards technology-driven financial innovation. The term fintech is a combination of finance and technology, which means ICT technology currently associated with all finance areas. The popularity of the fintech industry has significantly increased over time, with full investment and support for numerous startups. Therefore, both academia and practice tried to analyze the trend of the fintech area. Despite the fact, however, previous research has limitations in terms of collecting relevant databases for fintech and identifying proper application areas. In response, this study proposed a new method for analyzing the trend of Fintech fields by expanding Fintech's terminology and using network analysis and topic modeling. A new Fintech terminology list was created and a total of 18,341 patents were collected from USPTO for 10 years. The co-classification analysis and network analysis was conducted to identify the technological trends of patent classification. In addition, topic modeling was conducted to identify the trends of fintech in order to analyze the contents of fintech. This study is expected to help both managers and investors who want to be involved in technology-driven financial services seize new FinTech technology opportunities.

Development of a CPInterface (COMSOL-PyLith Interface) for Finite Source Inversion using the Physics-based Green's Function Matrix (물리 기반 유한 단층 미끌림 역산을 위한 CPInterface (COMSOL-PyLith Interface) 개발)

  • Minsu Kim;Byung-Dal So
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Finite source inversion is performed with a Green's function matrix and geodetic coseismic displacement. Conventionally, the Green's function matrix is constructed using the Okada model (Okada, 1985). However, for more realistic earthquake simulations, recent research has widely adopted the physics-based model, which can consider various material properties such as elasticity, viscoelasticity, and elastoplasticity. We used the physics-based software PyLith, which is suitable for earthquake modeling. However, the PyLith does not provide a mesh generator, which makes it difficult to perform finite source inversions that require numerous subfaults and observation points within the model. Therefore, in this study, we developed CPInterface (COMSOL-PyLith Interface) to improve the convenience of finite source inversion by combining the processes of creating a numerical model including sub-faults and observation points, simulating earthquake modeling, and constructing a Green's function matrix. CPInterface combines the grid generator of COMSOL with PyLith to generate the Green's function matrix automatically. CPInterface controls model and fault information with simple parameters. In addition, elastic subsurface anomalies and GPS observations can be placed flexibly in the model. CPInterface is expected to enhance the accessibility of physics-based finite source inversions by automatically generating the Green's function matrix.

Development of a Robot Programming Instructional Model based on Cognitive Apprenticeship for the Enhancement of Metacognition (메타인지 발달을 위한 인지적 도제 기반의 로봇 프로그래밍 교수.학습 모형 개발)

  • Yeon, Hyejin;Jo, Miheon
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.225-234
    • /
    • 2014
  • Robot programming allows students to plan an algorithm in order to solve a task, implement the algorithm, easily confirm the results of the implementation with a robot, and correct errors. Thus, robot programming is a problem solving process based on reflective thinking, and is closely related to students' metacognition. On this point, this research is conducted to develop a robot programming instructional model for tile enhancement of students' metacognition. The instructional processes of robot programming are divided into 5 stages (i.e., 'exploration of learning tasks', 'a teacher's modeling', 'preparation of a plan for task performance along with the visualization of the plan', 'task performance', and 'self-evaluation and self-reinforcement'), and core strategies of metacognition (i.e., planning, monitering, regulating, and evaluating) are suggested for students' activities in each stage. Also, in order to support students' programming activities and the use of metacognition, instructional strategies based on cognitive apprenticeship (i.e. modeling, coaching and scaffolding) are suggested in relation to the instructional model. In addition, in order to support students' metacognitive activities. the model is designed to use self-questioning, and questions that students can use at each stage of the model are presented.

Prototype Development of Marine Information based Supporting System for Oil Spill Response (해양정보기반 방제지원시스템 프로토타입 구축에 관한 연구)

  • Kim, Hye-Jin;Lee, Moonjin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • In oder to develop a decision supporting system for oil spill response, the prototype of pollution response support system which has integrated oil spill prediction system and pollution risk prediction system has developed for Incheon-Daesan area. Spill prediction system calculates oil spill aspects based on real-time wind data and real-time water flow and the residual volume of spilt oil and spread pattern are calculated considering the characteristic of spilt oil. In this study, real-time data is created from results of real-time meteorological forecasting model(National Institute of Environmental Research) using ftp, real-time tidal currents datasets are built using CHARRY(Current by Harmonic Response to the Reference Yardstick) model and real-time wind-driven currents are calculated applying the correlation function between wind and wind-driven currents. In order to model the feature which is spilt oil spreading according to real-time water flow is weathered, the decrease ratio by oil kinds was used. These real-time data and real-time prediction information have been integrated with ESI(Environmental Sensitivity Index) and response resources and then these are provided using GIS as a whole system to make the response strategy.

  • PDF