• 제목/요약/키워드: 연결 인식 알고리즘

검색결과 212건 처리시간 0.033초

음소결정트리 상태분할을 이용한 한국어 연속음성인식에 관한 연구 (A Study on the Korean Continuous Speech Recognition using Phonetic Decision Tree-based State Splitting)

  • 오세진;황철준;김범국;정호열;정현열
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.277-280
    • /
    • 2001
  • 본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.

  • PDF

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.11-16
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

  • PDF

효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for Effective Image Recognition)

  • 김광백;박충식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

고차 뉴런을 이용한 KOHONEN 자기 조직화 맵의 연결강도 특성 (Control Weights On Supervised Kohonen Feature Map For Using Higher Order Neuron)

  • 정종수;김성일;전병훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2516-2518
    • /
    • 2003
  • 본 논문은 고차 뉴런의 문제점으로 지적되고 있는 뉴런이 방대하게 증가하는 문제를 해결하고자, 최적의 뉴런을 생성하고 생성되어진 고차 뉴런 중 일정 비율로 뉴런의 연결강도를 도태시켜 감에 따라 네트워크상에 나타나는 특성을 비교하였다. 본 논문은 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵의 고차 뉴런부에 일정 비율로 연결강도를 도태한 후 인식률을 얻는 형태로 시뮬레이션을 하였다. 특히, 종래 형태의 고차 뉴런을 이용한 Kohonen 자기 조직화 맵의 알고리즘을 변형없이 사용하였으며 중복되는 뉴런을 최대한 억제하기 위해 2차 뉴런만을 생성한 네트워크 구조 위에 입력 데이터의 특징을 유지하고 고차 뉴런의 특징을 더욱 활성화하기 위해 일정한 양의 연결강도를 도태시킴으로써 출력면에서 국소집중 반응에 의한 정확한 인식률 향상 등을 조사하는 시뮬레이션을 하였다. 본 제안 모델의 특성을 살펴보기 위해 60개의 데이터로 이루어진 금속 소나 음데이터와 암석 소나 음 데이터를 이용하여 금속인지 암석인지를 판별하는 시뮬레이션을 하였다.

  • PDF

은닉 마르코프 모델과 레벨 빌딩을 이용한 한국어 연속 음성 인식 (Recognition of Continuous Spoken Korean Language using HMM and Level Building)

  • 김경현;김상균;김항준
    • 전자공학회논문지C
    • /
    • 제35C권11호
    • /
    • pp.63-75
    • /
    • 1998
  • 한국어 연속 음성에서 발생하는 조음결합문제를 해결하기 위하여 단어를 기본 인식 단위로 사용할 경우 각 단어의 효율적인 표현 방법, 연속된 단어로 이루어진 여러 문장의 표현 방법 그리고 입력된 연속음성을 연속된 여러 단어로의 정합 방법에 관한 연구가 선행되어야 한다. 본 논문에서는 은닉 마르코프 모델과 레벨빌딩 알고리즘을 이용한 한국어 연속 음성 인식 시스템을 제안한다. 각 단어는 은닉 마르코프 모델로 표현하고 문장을 표현하기 위하여 단어 모델을 연결한 형태인 인식 네트워크를 구성한다. 인식네트워크의 탐색 알고리즘으로는 레벨 빌딩 알고리즘을 사용한다. 제안한 방법은 항공기 예약 시스템에 적용한 실험에서 인식율과 인식속도면에서 실용적이었으며 또한 비교적 적은 저장공간으로 전체 문장을 표현하고 쉽게 확장할 수 있다는 장점을 가지고 있다.

  • PDF

부분방전 패턴인식을 위한 퍼지뉴럴네트워크의 유전자적 최적 설계 (Genetically Optimized Design of Fuzzy Neural Networks for Partial Discharge Pattern Recognition)

  • 박건준;김길성;오성권;최원;김정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1891-1892
    • /
    • 2008
  • 본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.

  • PDF

인접 융선과의 연관성 분석을 통한 특징점 추출 알고리즘 (Association analysis using the adjacent feature point Ridge Extraction algorithm)

  • 김유영;김종민;김영호;김강
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.339-341
    • /
    • 2015
  • 지문 인식 시스템의 인식을 위한 등록점으로 융선의 단점과 분기점에 관하여 연구하였다. 원 지문 영상은 전처리 과정을 거치게 되면서 잘못된 특징점을 포함하게 되며 이는 지문 인식 시스템의 효율성을 감소시키는 원인이 될 수 있다. 따라서 세선화된 지문 영상으로부터 후보 특징점을 추출한 후 연결성 탐색 정보를 이용하여 의사 특징점을 제거할 수 있는 알고리즘을 제안한다.

  • PDF

다중 출력을 가진 퍼지 집합 기반 퍼지뉴럴네트워크 최적 설계 및 부분방전 패턴인식으로의 적용 (Optimal Design of Fuzzy Set-based Fuzzy Neural Network with Multi-Output and Its application to Partial Discharge Pattern Recognition)

  • 박건준;오성권;김현기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.411-414
    • /
    • 2008
  • 본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.

  • PDF

동일 융성 상에 존재하는 특징점 간의 연결정보를 이용한 지문인식 (Fingerprint Recognition using Connected Ridge Information between Minutiae on the Same Ridger)

  • 김현철;심재창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권10호
    • /
    • pp.764-772
    • /
    • 2001
  • 본 논문은 지문의 특징점들이 융선으로 서로 연결되어진 구조 정보를 활용한 지문 매칭 알고리즘에 대해 연구하였다. 매칭에 이용한 특징은 분기점과 단점의 위치 및 분기점과 단점에서 융선의 진행 방향 등이다. 동일 융선 상에 존재하는 특징점들에 대한 연결정보를 추출하고, 이를 이용하여 원문지문과 입력지문간의 좌표 변환의 기준이 되는 특징점 쌍을 검출한다. 서로 일치하는 한 쌍의 특징을 이용해 입력지문을 이동 회전하여 원문지문과 일치시킨 후 각 특징들의 위치, 융선 방향이 일치하는 개수에 따라 지문의 동일여부를 판단하였다. 제안된 알고리즘은 회전과 이동에 무관한 지문인식이 가능하다. 89명으로부터 얻은 445매의 지문영상에 대한 실험결과, 지문매칭의 처리속도가 31%향상되었다.

  • PDF

시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식 (AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features)

  • 황승준;안광표;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제17권2호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 논문에서는 키넥트 센서를 이용한 AdaBoost 기반 제스처 인식에 관한 알고리즘을 제안한다. 최근 스마트 TV에 대한 보급으로 관련 산업이 주목받고 있다. 기존 리모컨을 이용하여 TV를 컨트롤 하던 시대에서 벗어나 제스처를 이용하여 TV를 컨트롤 할 수 있는 새로운 접근을 제안한다. AdaBoost 학습 모델에 신체 정규화 된 시간 간격 특징 벡터의 집합을 특징 패턴으로 하여, 속도가 다른 동작들을 인식할 수 있도록 하였다. 또한 속도가 다른 다양한 제스처를 인식하기 위해 다중 AdaBoost 알고리즘을 적용하였다. 제안된 알고리즘을 실제 동영상 플레이어와 연결하여 적용하였고, 실험 후 좌표 변화를 이용한 알고리즘에 비해 정확도가 향상되었음을 확인하였다.